FAST PROTEIN STRUCTURAL ASSESSMENT USING CIRCULAR DICHROISM (CD) SPECTROSCOPY: AN UPDATED REVIEW
DOI:
https://doi.org/10.22159/ijcr.2026v10i2.331Keywords:
Protein, Secondary structure, Tertiary structure, SpectroscopyAbstract
Circular dichroism (CD) spectroscopy has become a rapid and versatile analytical technique for probing protein structure, playing a pivotal role in modern proteomics and structural genomics. This review integrates studies published between 1994-2025 to examine the principles, instrumentation, and diverse applications of CD spectroscopy. CD measures the differential absorption of left- and right-circularly polarized light by chiral molecules, enabling semi-quantitative estimation of protein secondary structures such as α-helices, β-sheets, and random coils using far-UV spectra, and providing insights into tertiary environments via near-UV signals. Its applications include monitoring protein folding and unfolding, characterizing intrinsically disordered proteins (IDPs), and assessing structural integrity in recombinant proteins and biopharmaceuticals. The combination of experimental CD data with computational tools including vibrational CD (VCD) simulations, the BeStSel algorithm, and machine learning approaches has improved accuracy, particularly for β-rich, flexible, or disordered protein systems. Despite limitations, such as the need for high-purity samples and approximate secondary structure estimation, CD’s minimal sample requirement, rapid data acquisition, and solution-based analysis make it an essential tool for initial structural evaluation. Looking forward, advances in computational integration, standardized reference databases, and expanded applications to dynamic protein complexes and challenging biomolecules promise to further enhance CD spectroscopy as a cornerstone technique in structural biology and biotechnology.
Downloads
References
1. Rehan SFM, Sambhajib UA. Efficient Protein Purification: From Basics to Advanced Analytical Techniques – A Review. Anal Bioanal Chem Res. 2025;13(1):133-146. https://doi.org/10.22036/abcr.2025.545961.2420
2. Greenfield NJ. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure. Nat Protoc. 2006;1(6):2876-2890. doi:10.1038/nprot.2006.202.
3. Rodger A, Marshall D. Beginners Guide to Circular Dichroism. Biochemist. 2021;43(4):58-64. doi:10.1042/bio_2021_150.
4. Miles AJ, Janes RW, Wallace BA. Tools and Methods for Circular Dichroism Spectroscopy of Proteins: A Tutorial Review. Chem Soc Rev. 2021;50(15):8400-8413. doi:10.1039/d0cs00558d.
5. Kelly SM, Jess TJ, Price NC. How to Study Proteins by Circular Dichroism. BiochimBiophys Acta Proteins Proteom. 2005;1751(2):119-139. doi:10.1016/j.bbapap.2005.06.005.
6. Nakanishi K, Berova N, Woody R. Circular Dichroism: Principles and Applications. VCH; 1994.
7. Solomon EI, Lever ABP. Inorganic Electronic Structure and Spectroscopy. Wiley-Interscience; 2006.
8. Sreerama N, Venyaminov SY, Woody RW. Computation and Analysis of Protein Circular Dichroism Spectra. Methods Enzymol. 2004;383:318-351. doi:10.1016/s0076-6879(04)83013-5.
9. Andrews SS, Tretton J. Physical Principles of Circular Dichroism. J Chem Educ. 2020;97(12):4370-4376. doi:10.1021/acs.jchemed.0c00641.
10. Kondo Y. Principles and Applications of CD Spectroscopy. Yuki Gosei Kagaku Kyokaishi. 2017;75(6):557-563. doi:10.5059/yukigoseikyokaishi.75.557.
11. Fasman GD, ed. Circular Dichroism and the Conformational Analysis of Biomolecules. Plenum Press; 1996.
12. Oyama T, Suzuki S, Akao K-i. Circular Dichroism Spectroscopy in Protein Engineering and Pharmaceutical Development: Applications in Structural Characterization and Quality Assessment. Protein Expr Purif. 2025;237:106826. doi:10.1016/j.pep.2025.106826.
13. Linhares LA, Ramos CHI. Unlocking Insights into Folding, Structure, and Function of Proteins through Circular Dichroism Spectroscopy—A Short Review. Appl Biosci. 2023;2(4):639-655. doi:10.3390/applbiosci2040040.
14. Sun X, Cao E, Bai C, He Y, Qin J. Circular Dichroism Spectra of Different Structures Formed by the Oligonucleotides. Chin Sci Bull. 1998;43(17):1456-1460. doi:10.1007/bf02883409.
15. Keiderling TA, Wang B, Urbanova M, Pancoska P, Dukor RK. Empirical Studies of Protein Secondary Structure by Vibrational Circular Dichroism and Related Techniques: α-Lactalbumin and Lysozyme as Examples. Faraday Discuss. 1994;99:263-285. doi:10.1039/fd9949900263.
16. Datta D, Swamy MJ. Fluorescence and Circular Dichroism Studies on the Accessibility of Tryptophan Residues and Unfolding of a Jacalin-Related α-d-galactose-specific Lectin from Mulberry (Morus indica). J PhotochemPhotobiol B. 2017;170:108-117. doi:10.1016/j.jphotobiol.2017.03.026.
17. Sangeeta, Pathania AR. Circular Dichroism and Its Uses in Biomolecular Research: A Review. E3S Web Conf. 2021;309:01229. doi:10.1051/e3sconf/202130901229.
18. Honisch C, Donadello V, Hussain R, et al. Application of Circular Dichroism and Fluorescence Spectroscopies to Assess Photostability of Water-Soluble Porcine Lens Proteins. ACS Omega. 2020;5(8):4293-4301. doi:10.1021/acsomega.9b04146.
19. Hall V, Sklepari M, Rodger A. Protein Secondary Structure Prediction from Circular Dichroism Spectra Using a Self-Organizing Map with Concentration Correction. Chirality. 2014;26(9):471-482. doi:10.1002/chir.22338.
20. Micsonai A, Wien F, Kernya L, et al. Accurate Secondary Structure Prediction and Fold Recognition for Circular Dichroism Spectroscopy. Proc Natl Acad Sci U S A. 2015;112(24):3095-3103. doi:10.1073/pnas.1500851112.
21. Eikås KDR, Beerepoot MTP, Ruud K. A Computational Protocol for Vibrational Circular Dichroism Spectra of Cyclic Oligopeptides. J Phys Chem A. 2022;126(32):5458-5471. doi:10.1021/acs.jpca.2c04133.
22. Rogers DM, Do H, Hirst JD. Electronic Circular Dichroism of Proteins Computed Using a Diabatisation Scheme. Mol Phys. 2022;121(9-10):e2133748. doi:10.1080/00268976.2022.2133748.
23. Uporov IV, Forlemu NY, Nori R, et al. Introducing DInaMo: A Package for Calculating Protein Circular Dichroism Using Classical Electromagnetic Theory. Int J Mol Sci. 2015;16(9):21237-21276. doi:10.3390/ijms160921237.
24. Jasim SB, Li Z, Guest EE, Hirst JD. DichroCalc: Improvements in Computing Protein Circular Dichroism Spectroscopy in the Near-Ultraviolet. J Mol Biol. 2018;430(18):3096-3101. doi:10.1016/j.jmb.2018.06.026.
25. Janes RW. Bioinformatics Analyses of Circular Dichroism Protein Reference Databases. Bioinformatics. 2005;21(23):4230-4238. doi:10.1093/bioinformatics/bti679.
26. Zhao L, Zhang J, Zhang Y, et al. Accurate Machine Learning Prediction of Protein Circular Dichroism Spectra with Embedded Density Descriptors. JACS Au. 2021;1(12):2146-2155. doi:10.1021/jacsau.1c00336.
27. Matsuo K, Sakurada Y, Yonehara R, Kataoka M, Gekko K. Secondary-Structure Analysis of Denatured Proteins by Vacuum-Ultraviolet Circular Dichroism Spectroscopy. Biophys J. 2007;92(11):4088-4096. doi:10.1529/biophysj.106.103069.
28. Nagy G, Igaev M, Jones NC, Hoffmann SV, Grubmüller H. ESCA: Predicting Circular Dichroism Spectra from Protein Molecular Structures. J Chem Theory Comput. 2019;15(9):5087-5102. doi:10.1021/acs.jctc.9b00203.
29. Karabencheva-Christova TG, Carlsson U, Balali-Mood K, Black GW, Christov CZ. Conformational Effects on the Circular Dichroism of Human Carbonic Anhydrase II: A Multilevel Computational Study. PLoS One. 2013;8(2):e56874. doi:10.1371/journal.pone.0056874.
30. Gekko K. Synchrotron-Radiation Vacuum-Ultraviolet Circular Dichroism Spectroscopy in Structural Biology: An Overview. BiophysPhysicobiol. 2019;16:41-58. doi:10.2142/biophysico.16.0_41.
31. Nagy G, Hoffmann SV, Grubmüller H. Reference Data Set for Circular Dichroism Spectroscopy Comprised of Validated Intrinsically Disordered Protein Models. Appl Spectrosc. 2024;78(9):1041-1052. doi:10.1177/00037028241252480.
32. Park K, Shen BW, Parmeggiani F, Huang P-S, Stoddard BL, Baker D. Control of Repeat-Protein Curvature by Computational Protein Design. Nat Struct Mol Biol. 2015;22(2):167-174. doi:10.1038/nsmb.2938.
33. Whitmore L, Wallace BA. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers. 2008;89(5):392-400. doi:10.1002/bip.20853.
34. Wallace BA. Protein Characterisation by Synchrotron Radiation Circular Dichroism Spectroscopy. Q Rev Biophys. 2009;42(4):317-370. doi:10.1017/s003358351000003x.
35. Wallace BA, Janes RW. Applications of Circular Dichroism to Studies of Protein Structure and Folding. CurrOpin Chem Biol. 2001;5(5):567-571. doi:10.1016/s1367-5931(00)00243-8.
36. Janes RW. Combining Sequence-Based Prediction Methods and Circular Dichroism and Infrared Spectroscopic Data to Improve Protein Secondary Structure Determinations. BMC Bioinformatics. 2008;9:24. doi:10.1186/1471-2105-9-24.
37. Khrapunov S. CD Spectroscopy Has Intrinsic Limitations for Protein Secondary Structure Analysis. Anal Biochem. 2009;389(2):174-176. doi:10.1016/j.ab.2009.03.035.
Published
How to Cite
Issue
Section
Copyright (c) 2026 ASHISH SAMBHAJI UZGARE

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



