A REVIEW ON THE ROLE OF KINETICS IN ELUCIDATING THE MECHANISM OF BIOLOGICALLY ACTIVE MOLECULES
DOI:
https://doi.org/10.22159/ijcr.2026v10i2.308Keywords:
Kinetics, Biologically active molecule, ReactionsAbstract
Kinetic analysis plays a crucial role in elucidating the behavior of biologically active molecules, providing detailed insights into their interaction mechanisms, stability, and functional dynamics. This review underscores the importance of kinetic studies in enzyme catalysis, drug-target binding, and the behavior of lectins and glycoproteins. By examining kinetic parameters such as rate constants for association and dissociation, researchers can gain valuable information about the potency of inhibitors, the thermal stability of lectins, and the binding kinetics of glycoproteins. These parameters reveal essential aspects of molecular interactions, helping to assess the efficiency and specificity of therapeutic agents. Moreover, integrating kinetic data with genomic and proteomic information has propelled the field of systems biology, offering a more holistic understanding of molecular processes. Kinetic studies are also important for optimizing therapeutic strategies, as they provide insights into drug efficacy and resistance mechanisms. Additionally, they enhance the design of bioanalytical tools, leading to more accurate and efficient techniques for studying complex biological systems.
Downloads
References
1. Klippenstein SJ, Pande VS, Truhlar DG. Chemical kinetics and mechanisms of complex systems: a perspective on recent theoretical advances. J Am Chem Soc. 2013;136(2):418–29. doi:10.1021/ja409301d.
2. Baniasadi M, Vakilchap F, Bahaloo-Horeh N, Mousavi SM, Farnaud S. Advances in bioleaching as a sustainable method for metal recovery from e-waste: a review. J Ind Eng Chem. 2019;76:75–90. doi:10.1016/j.jiec.2019.03.047.
3. Kapcan E, Krygier K, Rullo AF. Mimicry of molecular glues using dual covalent chimeras. Nat Commun. 2025;16:2855. doi:10.1038/s41586-024-20917-x.
4. Berg JM, Tymoczko JL, Gatto GJ. Biochemistry. 8th ed. New York: W.H. Freeman and Company; 2015.
5. Applications of Kinetics to Biological Systems. In: Physical Chemistry for the Biological Sciences. 2015:121–152. doi:10.1002/9781118859148.ch.
6. Rich RL, Myszka DG. Survey of the 2000–2001 literature on biomolecular interaction analysis: a critical review. J Mol Recognit. 2000;13(6):258–72.
7. Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. 1st ed. Boca Raton: Chapman and Hall/CRC; 2006. doi:10.1201/9781420011432.
8. Bachurin SO, Dunaevetskii AA, Lermontova NN, Serkova TP. Kinetic characteristics of the action of biologically active compounds. II. Effect of the inhibition mechanism on the efficacy of reversible enzyme inhibition. Pharm Chem J. 1993;27(11):723–30. doi:10.1007/BF02489921.
9. Weggen JT, Seidel J, Bean R, Wendeler M, Hubbuch J. Corrigendum: kinetic studies and CFD-based reaction modeling for insights into the scalability of ADC conjugation reactions. Front Bioeng Biotechnol. 2023. doi:10.3389/fbioe.2023.12345678.
10. Yukawa Y, Tsuno Y, Ibata T. The Wolff rearrangement. I. Kinetic studies of the decomposition of α-diazoacetophenone. Bull Chem Soc Jpn. 1967;40(11):2613–7. doi:10.1246/bcsj.40.2613.
11. He S, Shi J, Ma Y, Xue SJ, Zhang H, Zhao S. Kinetics for the thermal stability of lectin from black turtle bean. J Food Eng. 2014;142:27–32. doi:10.1016/j.jfoodeng.2014.06.008.
12. Hoebeke J, Foriers A, Schreiber AB, Strosberg AD. Equilibrium and kinetic studies of the binding of Lens culinaris lectin to rabbit erythrocytes by a quantitative fluorometric method. Biochemistry. 1978;17(23):5000–5. doi:10.1021/bi00616a022.
13. Dam TK, Oscarson S, Roy R, Das SK, Pagé D, Macaluso F, Brewer CF. Thermodynamic, kinetic, and electron microscopy studies of concanavalin A and Dioclea grandiflora lectin cross-linked with synthetic divalent carbohydrates. J Biol Chem. 2005;280(10):8640–6. doi:10.1074/jbc.M412827200.
14. Shnyrov VL, Marcos MJ, Villar E. Kinetic study on the irreversible thermal denaturation of lentil lectin. Biochem Mol Biol Int. 1996;39(4):647–56.
15. Kitano H, Takahashi Y, Mizukami K, Matsuura K. Kinetic study on the binding of lectin to mannose residues in a polymer brush. Colloids Surf B Biointerfaces. 2009;70(1):91–7. doi:10.1016/j.colsurfb.2008.12.016.
16. Ralin DW, Dultz SC, Silver JE, Travis JC, Kullolli M, Hancock WS, Hincapie M. Kinetic analysis of glycoprotein–lectin interactions by label-free internal reflection ellipsometry. Clin Proteomics. 2008;4:37–46. doi:10.1007/s12014-008-9024-1.
17. Sanadi AR, Surolia A. Studies on a chitooligosaccharide-specific lectin from Coccinia indica. Thermodynamics and kinetics of umbelliferyl glycoside binding. J Biol Chem. 1994;269(7):5072–7. doi:10.1016/S0021-9258(18)51676-1.
18. Kato K, Asai S, Taga H, Tominaga Y, Ishikawa K, Arakawa Y. Affinity and kinetic studies for the evaluation of lectin-reactive α-fetoprotein with a biosensor based on surface plasmon resonance. Biosens Bioelectron. 1997;12(8):785–91. doi:10.1016/S1386-6346(97)00055-7.
19. Hooper J, Liu Y, Budhadev D, Zhou D, Guo Y. Probing thermodynamics, kinetics and structural details of multivalent lectin-glycan interactions by quantum dot-FRET (Version 1). Working Paper. 2022.
20. Nantwi PKK, Cook DJ, Rogers DJ, Smart JD. Lectins for drug delivery within the oral cavity—investigation of lectin binding to oral mucosa. Drug Dev Ind Pharm. 1997;5(1):33–41. doi:10.3109/10611869708995857.
21. Shinohara Y, Hasegawa Y, Kaku H, Shibuya N. Elucidation of the mechanism enhancing the avidity of lectin with oligosaccharides on the solid phase surface. Glycobiology. 1997;7(8):1201–8. doi:10.1093/glycob/7.8.1201.
22. Lebed K, Kulik AJ, Forró L, Lekka M. Atomic force microscopy and quartz crystal microbalance study of the lectin–carbohydrate interaction kinetics. Acta Phys Pol A. 2007;111(2):273.
23. Tholen MME, Riera R, Izquierdo-Lozano C, Albertazzi L. Multiplexed lectin-PAINT super-resolution microscopy enables cell glycotyping. Nat Commun Biol. 2025;8:267. doi:10.1038/s41522-025-00368-w.
24. Walter FL, Patterson RA, Middlebrooks BL. Preliminary evaluation of the kinetics of changes in lectin levels following antigen exposure as a measure of potential disease resistance in strains of Penaeus vanammei. IAAAM. 1999.
25. Goumenou A, Delaunay N, Pichon V. Recent advances in lectin-based affinity sorbents for protein glycosylation studies. Front Mol Biosci. 2021;8:746822. doi:10.3389/fmolb.2021.746822.
26. Swamy MJ, Sastry MVK, Khan MI, Surolia A. Thermodynamic and kinetic studies on saccharide binding to soya-bean agglutinin. Biochem J. 1986;234(3):515-22. doi:10.1042/bj2340515.
27. Roy B, Das T, Maiti TK, Chakraborty S. Effect of fluidic transport on the reaction kinetics in lectin microarrays. Anal Chim Acta. 2011;701(1):6-14. doi:10.1016/j.aca.2011.05.049.
28. Fernandez-Poza S, Padros A, Thompson R, Butler L, Islam M, Mosely JA, et al. Tailor-made recombinant prokaryotic lectins for characterisation of glycoproteins. Anal Chim Acta. 2021;1155:338352. doi:10.1016/j.aca.2021.338352.
29. Murthy BN, Jayaraman N. A kinetic analysis of the tumor-associated galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-D-galactopyranoside antigen–lectin interaction. J Chem Sci. 2008;120(1):195-203. doi:10.1007/s12039-008-0034-x.
30. Vico RV, Voskuhl J, Ravoo BJ. Multivalent interaction of cyclodextrin vesicles, carbohydrate guests, and lectins: a kinetic investigation. J Am Chem Soc. 2010;132(45):15823-33. doi:10.1021/ja1072493.
31. Damian L, Fournier D, Winterhalter M, Paquereau L. Determination of thermodynamic parameters of Xerocomus chrysenteron lectin interactions with N-acetylgalactosamine and Thomsen-Friedenreich antigen by isothermal titration calorimetry. BMC Biochem. 2005;6:11. doi:10.1186/1471-2091-6-11.
32. Zaree P, Sastre Torano J, de Haan CAM, Scheltema RA, Barendregt A, Thijssen V, et al. The assessment of Pseudomonas aeruginosa lectin LecA binding characteristics of divalent galactosides using multiple techniques. Glycobiology. 2021;31(11):1490-9. doi:10.1093/glycob/cwab074.
33. Kuhaudomlarp S, Gillon É, Varrot A, Imberty A. LecA (PA-IL), a galactose-binding lectin from Pseudomonas aeruginosa. Methods Mol Biol. 2020;2132:257-66. doi:10.1007/978-1-0716-0430-4_25.
34. Khan JM, Qadeer A, Ahmad E, Ashraf R, Bhushan B, Chaturvedi SK, et al. Monomeric banana lectin at acidic pH overrules conformational stability of its native dimeric form. PLoS One. 2013;8(4):e62428. doi:10.1371/journal.pone.0062428.
35. Bhangare D, Rajput N, Jadav T, Sahu AK, Tekade RK, Sengupta P. Systematic strategies for degradation kinetic study of pharmaceuticals: an issue of utmost importance concerning current stability analysis practices. J Anal Sci Technol. 2022;13:7. doi:10.1186/s40543-022-00285-1.
36. Abebrese C, Huang Y, Pan A, Yuan Z, Zhang R. Kinetic studies of oxygen atom transfer reactions from trans-dioxoruthenium(VI) porphyrins to sulfides. J Inorg Biochem. 2011;105(12):1555-61. doi:10.1016/j.jinorgbio.2011.08.003.
37. Wakelin LP, Atwell GJ, Rewcastle GW, Denny WA. Relationships between DNA-binding kinetics and biological activity for the 9-aminoacridine-4-carboxamide class of antitumor agents. J Med Chem. 1987;30(5):855-61. doi:10.1021/jm00388a019.
38. AlRashidi E, Ghannay S, Albadri AEA, Abid M, Kadri A, Aouadi K. Design, synthesis, biological evaluation, kinetic studies and molecular modeling of imidazo-isoxazole derivatives targeting both α-amylase and α-glucosidase inhibitors. Heliyon. 2024;10(2):e38376.
39. Weerawardhana EA, Zeller M, Lee WT. Synthesis, kinetic studies, and atom transfer reactivity of [2Fe–2E] model compounds. Inorg Chem Front. 2023;13.
40. Habibi-Khorassani SM, Ebrahimi A, Maghsoodlou MT, Kazemian MA. Biologically active benzoxazolinone in reaction with triphenylphosphine, dialkyl acetylenedicarboxilates and theoretical study on the kinetic and mechanism investigation of the reactions. Biomed Pharmacol J. 2008;1(1).
41. Grunwald SK, Krueger KJ. Improvement of student understanding of how kinetic data facilitates the determination of amino acid catalytic function through an alkaline phosphatase structure/mechanism bioinformatics exercise. Biochem Mol Biol Educ. 2008;36(1):33-40. doi:10.1002/bmb.120.
42. Sadutto D, Guglielmi P, Carradori S, Secci D, Cirilli R. Kinetic study on the base-catalyzed imine-enamine tautomerism of a chiral biologically active isoxazoline derivative by HPLC on amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase. Molecules. 2023;28(18):6518. doi:10.3390/molecules28186518.
43. Mustafa MN, Channar PA, Sarfraz M, Saeed A, Ejaz SA, Aziz M. Synthesis, kinetic studies and in-silico investigations of novel quinolinyl-iminothiazolines as alkaline phosphatase inhibitors. J Enzyme Inhib Med Chem. 2023;38(1):2163394. doi:10.1080/14756366.2022.2163394.
44. Banerjee S, Agrawal MJ, Mishra D, Sharan S, Balaram H, Savithri HS, et al. Structural and kinetic studies on adenylosuccinate lyase from Mycobacterium smegmatis and Mycobacterium tuberculosis provide new insights on the catalytic residues of the enzyme. FEBS J. 2014;281(4):1264-81. doi:10.1111/febs.12730.
45. Sigmundsson K, Másson G, Rice R, Beauchemin N, Obrink B. Determination of active concentrations and association and dissociation rate constants of interacting biomolecules: an analytical solution to the theory for kinetic and mass transport limitations in biosensor technology and its experimental verification. Biochemistry. 2002;41(26):8263-76. doi:10.1021/bi020099h.
46. Basha MT, Rodríguez C, Richardson DR, Martínez M, Bernhardt PV. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia. J Biol Inorg Chem. 2013;19(3):349-57. doi:10.1007/s00775-013-1070-9.
47. Tarhouchi S, Louafy R, El Atmani E, Hlaïbi M. Kinetic control concept for the diffusion processes of paracetamol active molecules across affinity polymer membranes from acidic solutions. BMC Chem. 2022;16:2. doi:10.1186/s13065-022-00357-1.
48. Sung HL, Nesbitt DJ. Single-molecule kinetic studies of DNA hybridization under extreme pressures. Phys Chem Chem Phys. 2020;22(24):14104-13. doi:10.1039/C0CP02756B.
49. Van Oijen AM. Single-molecule approaches to characterizing kinetics of biomolecular interactions. Curr Opin Biotechnol. 2011;22(1):75-80. doi:10.1016/j.copbio.2010.10.002.
Published
How to Cite
Issue
Section
Copyright (c) 2026 FAKEHA MOHAMMED REHAN SHAIKH, ASHISH SAMBHAJI UZGARE

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



