TRACING ELEMENTS WITH PRECISION: A REVIEW OF INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP-MS)
DOI:
https://doi.org/10.22159/ijcr.2026v10i1.321Keywords:
Inductively coupled plasma mass spectrometry, Advances, Future scope, Trace element analysis, Laser ablation, Isotope ratio analysisAbstract
Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) has established itself as a preeminent technique in analytical science, providing powerful capabilities for trace element and isotope analysis due to its outstanding sensitivity, accuracy, and multi-element detection. This review offers a comprehensive overview of ICP-MS, covering its fundamental principles and instrumentation. The technique functions by ionizing samples in an argon plasma and separating ions according to their mass-to-charge ratios, achieving detection limits at the parts-per-trillion level. ICP-MS finds applications across diverse areas, including environmental monitoring, food authentication, pharmaceutical and drug testing, forensic investigations, and biomedical research on toxic elements and metal bioaccumulation. Its capacity for isotopic ratio determination and species-specific analysis provides valuable insights into contamination pathways, metabolic mechanisms, material provenance, and cellular heterogeneity. By combining high sensitivity with precision and versatility, ICP-MS continues to advance modern analytical science, enabling comprehensive, high-throughput elemental and isotopic characterization across environmental, industrial, biomedical and life science domains.
Downloads
References
1. Garg E, Zubair M. Mass spectrometer. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024.
2. Son A, Kim W, Park J, Park Y, Lee W, Lee S. Mass spectrometry advancements and applications for biomarker discovery diagnostic innovations and personalized medicine. Int J Mol Sci. 2024;25(18):9880. doi: 10.3390/ijms25189880, PMID 39337367.
3. Wilschefski SC, Baxter MR. Inductively coupled plasma mass spectrometry: introduction to analytical aspects. Clin Biochem Rev. 2019;40(3):115-33. doi: 10.33176/AACB-19-00024, PMID 31530963.
4. Klika KD, Han J, Busse MS, Soloshonok VA, Javahershenas R, Vanhaecke F. Inductively coupled plasma mass spectrometry (ICP-MS): an emerging tool in radiopharmaceutical science. J Am Chem Soc. 2024;146(45):30717-27. doi: 10.1021/jacs.4c12254, PMID 39478417.
5. Thomas R. 40 y old and still solving problems: evolution of the ICP-MS application landscape. Spectroscopy. 2023;38:8-13. doi: 10.56530/spectroscopy.ut558205.
6. Clases D, Gonzalez De Vega R. Facets of ICP-MS and their potential in the medical sciences-part 1: fundamentals, stand-alone and hyphenated techniques. Anal Bioanal Chem. 2022;414(25):7337-61. doi: 10.1007/s00216-022-04259-1, PMID 36028724.
7. Montes Bayon M, Corte Rodriguez M, Alvarez Fernandez Garcia R, Severo Fagundes J. Biomedical analysis by ICP-MS: a focus on single cell strategies. ICP-MS Trace Elem Anal Tool Better Underst Med Cond. Elsevier; 2022. p. 109–40. doi: 10.1016/bs.coac.2022.03.002.
8. Woods B, McCurdy E. ICP-MS: key steps to control contamination and achieve low detection limits. Spectroscopy. 2022;37:54-6. doi: 10.56530/spectroscopy.vv1589e7.
9. Whitman College. Inductively coupled plasma–atomic emission spectroscopy. Whitman College; 2017.
10. Kutralam Muniasamy G, Shruti VC, Perez Guevara F, Flores JA. The emerging field of inductively coupled plasma mass spectrometry for (micro)nanoplastic analysis: “The 3As” analysis advances and applications. TrAC Trends Anal Chem. 2024;174:117673. doi: 10.1016/j.trac.2024.117673.
11. Hou X, Jones BT. Inductively coupled plasma mass spectrometry: development and applications. J Anal At Spectrom. 2000;15(11):1447–53. doi: 10.1039/b003477n.
12. Resano M. Living in a transient world: ICP-MS reinvented via time-resolved analysis for monitoring single events. Nat Commun. 2022;13(16):4436-73. PMID 35656130.
13. Jarvis KE, Gray AL, Houk RS. Handbook of inductively coupled plasma mass spectrometry. Springer; 1992. doi: 10.1007/978-94-011-3046-2.
14. Gramowska H, Krzyzaniak I, Baralkiewicz D, Goldyn R. Environmental applications of ICP-MS for simultaneous determination of trace elements and statistical data analysis. Environ Monit Assess. 2010;160(1-4):479-90. doi: 10.1007/s10661-008-0712-9, PMID 19190993.
15. Sun W, Yang K, Xia L. Application of ICP-MS method in environmental field. IOP Conf Ser.: Earth Environ Sci. 2021;769(2):022028. doi: 10.1088/1755-1315/769/2/022028.
16. Flores K, Turley RS, Valdes C, Ye Y, Cantu J, Hernandez Viezcas JA. Environmental applications and recent innovations in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Appl Spectrosc Rev. 2021;56(1):1-26. doi: 10.1080/05704928.2019.1694937.
17. Syarbaini. ICP-MS technology and its application to the study of environmental radioactivity. In: Proceedings of the third semin waste manag technol; 2000.
18. Hoffmann E, Ludke C, Stephanowitz H. Application of laser-ICP-MS in environmental analysis. Anal Bioanal Chem. 1996;355(7-8):900-3. doi: 10.1007/s0021663550900, PMID 15045292.
19. Mansor M, Drabesch S, Bayer T, Van Le AV, Chauhan A, Schmidtmann J. Application of single-particle ICP-MS to determine the mass distribution and number concentrations of environmental nanoparticles and colloids. Environ Sci Technol Lett. 2021;8(7):589-95. doi: 10.1021/acs.estlett.1c00314.
20. Profrock D, Prange A. Inductively coupled plasma mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions and trends. Appl Spectrosc. 2012;66(8):843-68. doi: 10.1366/12-06681, PMID 22800465.
21. Guagliardi I, Ricca N, Cicchella D. Comparative evaluation of inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence (XRF) analysis techniques for screening potentially toxic elements in soil. Toxics. 2025;13(4):314. doi: 10.3390/toxics13040314, PMID 40278630.
22. Popp M, Hann S, Koellensperger G. Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry a review. Anal Chim Acta. 2010;668(2):114-29. doi: 10.1016/j.aca.2010.04.036, PMID 20493287.
23. Pranaityte B, Padarauskas A, Naujalis E. Application of ICP-MS for the determination of trace metals in textiles. Environ Top. 2007;18(3):19.
24. Horn M. Applications of ICP-MS in semiconductor industry. Fresenius J Anal Chem. 1999;364(5):385-90. doi: 10.1007/s002160051355.
25. Mazarakioti EC, Zotos A, Thomatou AA, Kontogeorgos A, Patakas A, Ladavos A. Inductively coupled plasma-mass spectrometry (ICP-MS) a useful tool in the authenticity of agricultural products and foods origin. Foods. 2022;11(22):3705. doi: 10.3390/foods11223705, PMID 36429296.
26. Loeschner K, Johnson ME, Montoro Bustos AR. Application of single particle ICP-MS for the determination of inorganic nanoparticles in food additives and food: a short review. Nanomaterials (Basel). 2023;13(18):2547. doi: 10.3390/nano13182547, PMID 37764576.
27. Chudzinska M, Baralkiewicz D. Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity. Food Chem Toxicol. 2011;49(11):2741-9. doi: 10.1016/j.fct.2011.08.014, PMID 21871521.
28. Crews HM, Massey RC, McWeeny DJ, Dean JR, Ebdon L. Some applications of isotope analysis of lead in food by ICP-MS. J Res Natl Bur Stand. 1988;93(3):464. doi: 10.6028/jres.093.120.
29. Ferraris F, Adelantado C, Raggi A, Savini S, Zougagh M, Rios A. An ICP-MS-based analytical strategy for assessing compliance with the ban of E 171 as a food additive on the EU market. Nanomaterials (Basel). 2023;13(22):2957. doi: 10.3390/nano13222957, PMID 37999311.
30. Todorov TI, Gray PJ. Analysis of iodine in food samples by inductively coupled plasma-mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016;33(2):282-90. doi: 10.1080/19440049.2015.1131337, PMID 26730958.
31. Nardi EP, Evangelista FS, Tormen L. Saint Pierre TD, Curtius AJ, De Souza SS, Barbosa F Jr. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem. 2009;112(3):732. doi: 10.1016/j.foodchem.2008.06.010.
32. Laborda F, Bolea E, Jimenez Lamana J. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem. 2014;86(5):2270-8. doi: 10.1021/ac402980q, PMID 24308527.
33. Han Q, Mihara S, Hashimoto K, Fujino T. Optimization of tea sample preparation methods for ICP-MS and application to verification of Chinese tea authenticity. Food Sci Technol Res. 2014;20(6):1109-19. doi: 10.3136/fstr.20.1109.
34. Birse N, McCarron P, Quinn B, Fox K, Chevallier O, Hong Y. Authentication of organically grown vegetables by the application of ambient mass spectrometry and inductively coupled plasma (ICP) mass spectrometry; The leek case study. Food Chem. 2021;370:130851. doi: 10.1016/j.foodchem.2021.130851, PMID 34530348.
35. Reddy DN, Al Rajab AJ, Reddy GR. Biomedical and pharmaceutical applications of inductively coupled plasma–mass spectrometry (ICP-MS). In: Bobbarala V, editor. Drug discovery concepts to market. In Tech; 2018. doi: 10.5772/intechopen.74787.
36. Mittal M, Kumar K, Anghore D, Rawal RK. ICP-MS: analytical method for identification and detection of elemental impurities. Curr Drug Discov Technol. 2017;14(2):106-20. doi: 10.2174/1570163813666161221141402, PMID 28003007.
37. Lewen N, Mathew S, Schenkenberger M, Raglione T. A rapid ICP-MS screen for heavy metals in pharmaceutical compounds. J Pharm Biomed Anal. 2004;35(4):739-52. doi: 10.1016/j.jpba.2004.02.023, PMID 15193718.
38. Sugiyama N, Shikamori Y. Analysis of drug active pharmaceutical ingredients and biomolecules using triple quadrupole ICP-MS. In: Ogra Y, Hirata T, editors. Metallomics. Tokyo: Springer Japan. 2017. p. 181-96. doi: 10.1007/978-4-431-56463-8_9.
39. Gammelgaard B, Hansen HR, Sturup S, Moller C. The use of inductively coupled plasma mass spectrometry as a detector in drug metabolism studies. Expert Opin Drug Metab Toxicol. 2008;4(9):1187-207. doi: 10.1517/17425255.4.9.1187, PMID 18721113.
40. Kadhim IM, Miteb TT. Inductively coupled plasma mass spectrometry (ICP-MS) instrumentation analysis strengths limitations biomedical and pharmaceutical applications. Clin Images Case Rep. 2024;2(6):42.
41. Rao RN, Talluri MV. An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals. J Pharm Biomed Anal. 2007;43(1):13. doi: 10.1016/j.jpba.2006.07.004.
42. Chen W, Yang Y, Fu K, Zhang D, Wang Z. Progress in ICP-MS analysis of minerals and heavy metals in traditional medicine. Front Pharmacol. 2022;13:891273. doi: 10.3389/fphar.2022.891273, PMID 35837276.
43. Udristioiu A, Giubelan A, Nica Badea D. Determination of trace elements in hair analysis using ICP-mass spectrometry. Pharmacophore. 2021;12(3):54-9. doi: 10.51847/Ft7qx3VOb5.
44. John CV, Jadhav AP. Determination of fourteen preferred elemental impurities employing inductively coupled plasma–mass spectrometry (ICP-MS) and microwave acid digestion approach in parenteral ofloxacin samples. Indian Drugs. 2023;60(11):59-62. doi: 10.53879/id.60.11.14129.
45. Al Hakkani MF. Guideline of inductively coupled plasma mass spectrometry “ICP–MS”: fundamentals, practices determination of the limits, quality control and method validation parameters. SN Appl Sci. 2019;1(7):791. doi: 10.1007/s42452-019-0825-5.
46. Vyas AJ, Santoki ND, Parmar DU, Patel AB, Patel AI, Dudhrejia AV. Simultaneous estimation of fenofibric acid tablets elemental impurities using inductively coupled plasma mass spectrometry (ICP-MS). AJPA. 2025;15(1):1-6. doi: 10.52711/2231-5675.2025.00001.
47. Gregar F, Grepl J, Milde D, Pluhacek T. Direct elemental analysis of plant oils by inductively coupled plasma mass spectrometry: simple sample dilution combined with oxygen introduction into the plasma. Food Chem. 2024;447:139010. doi: 10.1016/j.foodchem.2024.139010, PMID 38513487.
48. Kose E, Dalmaz A, Sivrikaya Ozak S. ICP-MS analysis and validation by microwave digestion system for determination of heavy metals in allergy and cancer drugs taken orally. Duzce Universitesi Bilim ve Teknoloji Dergisi. 2023;11(4):1700-14. doi: 10.29130/dubited.1196985.
49. Ruffolo SA, Barca D, Alvarez de Buergo M, La Russa MF, ICP MS. Fundamentals and application to forensic science. Mineralogical analysis applied to forensics. 2022. p. 171-92. doi: 10.1007/978-3-031-08834-6_6.
50. Li X, Yu A, Xia X, Zhu Y, Song H. A study on the measurement of GSR with bloodstains by ICP-MS. Forensic Sci Res. 2024;9(4):owad033. doi: 10.1093/fsr/owad033, PMID 39664770.
51. Ogana JS, Usman I, Akpa TC, Yusuf SD, Gurku UM, Ibrahim U. Inductively coupled plasma mass spectrometry (ICP-MS): a modern analytical technique for nuclear forensic application. Dutse J Pure Appl Sci. 2019;5(2b):239.
52. Clases D, Gonzalez De Vega R. Facets of ICP-MS and their potential in the medical sciences-part 1: fundamentals, stand-alone and hyphenated techniques. Anal Bioanal Chem. 2022;414(25):7337-61. doi: 10.1007/s00216-022-04259-1, PMID 36028724.
53. Montero S, Hobbs AL, French TA, Almirall JR. Elemental analysis of glass fragments by ICP-MS as evidence of association: analysis of a case. J Forensic Sci. 2003;48(5):1101-7. doi: 10.1520/JFS2001413, PMID 14535675.
54. Aboul Enein Y, Tanase IG, Udrıstıoıu FM, Bunacıu AA. Trace elements analysis in paper using inductively coupled plasma-mass spectrometry (ICP-MS). J N Am. 2012;25(4):851.
55. Pryor AM. The development of inductively coupled plasma mass spectrometry for use in the provenance establishment of lead projectiles in forensic science. University Western Australia; 2021.
56. Chang CC, Johansen SS, Rasmussen BS, Linnet K, Thomsen R. Development and validation of an inductively coupled plasma mass spectrometry method for quantification of lithium in whole blood from forensic postmortem cases. Forensic Sci. 2025;5(2):22. doi: 10.3390/forensicsci5020022.
57. O Sullivan G, Min BJ, Bilyk JM, Ciezki R, Calosing R, Sandau CD. Forensic geo-gas investigation of methane: characterization of sources within an urban setting. Environ Forensics. 2010;11(1-2):108-16. doi: 10.1080/15275920903558737.
58. Latkoczy C, Becker S, Ducking M, Gunther D, Hoogewerff JA, Almirall JR. Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS. J Forensic Sci. 2005;50(6):1327-41. doi: 10.1520/JFS2005091, PMID 16382827.
59. Goulle JP, Mahieu L, Castermant J, Neveu N, Bonneau L, Laine G. Metal and metalloid multi-elementary ICP-MS validation in whole blood plasma, urine and hair. Reference values. Forensic Sci Int. 2005;153(1):39-44. doi: 10.1016/j.forsciint.2005.04.020, PMID 15979835.
60. Michalke B. Review about powerful combinations of advanced and hyphenated sample introduction techniques with inductively coupled plasma-mass spectrometry (ICP-MS) for elucidating trace element species in pathologic conditions on a molecular level. Int J Mol Sci. 2022;23(11):6109. doi: 10.3390/ijms23116109, PMID 35682788.
61. Ammann AA. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. J Mass Spectrom. 2007;42(4):419-27. doi: 10.1002/jms.1206, PMID 17385793.
62. Abrego Z, Ugarte A, Unceta N, Fernandez Isla A, Goicolea MA, Barrio RJ. Unambiguous characterization of gunshot residue particles using scanning laser ablation and ICP-MS. Anal Chem. 2012;84(5):2409. doi: 10.1021/ac203155r.
63. Jantzi SC. Elemental analysis and forensic comparison of soils by LIBS and LA-ICP-MS. Florida International University; 2013. doi: 10.25148/etd.FI13120403.
64. Becker P, Neff C, Hess S, Weis P, Gunther D. Forensic float glass fragment analysis using single-pulse laser ablation ICP-TOF-MS. J Anal At Spectrom. 2020;35(10):2254. doi: 10.1039/D0JA00284D.
65. Liu C, Hua Z, Meng X. Profiling of illicit cocaine seized in China by ICP-MS analysis of inorganic elements. Forensic Sci Int. 2017;276:77-84. doi: 10.1016/j.forsciint.2017.04.014, PMID 28514699.
66. Ulrich A, Moor C, Vonmont H, Jordi HR, Lory M. ICP-MS trace-element analysis as a forensic tool. Anal Bioanal Chem. 2004;378(4):1059-68. doi: 10.1007/s00216-003-2434-8, PMID 14735285.
67. Udey RN, Hunter BC, Smith RW. Differentiation of bullet type based on the analysis of gunshot residue using inductively coupled plasma mass spectrometry. J Forensic Sci. 2011;56(5):1268-76. doi: 10.1111/j.1556-4029.2011.01836.x, PMID 21777243.
68. Balaram V. Recent advances and trends in inductively coupled plasma–mass spectrometry and applications. LCGC Suppl. 2018;16(2).
69. Ziani I, Bouakline H, El Guerraf A, El Bachiri A, Fauconnier ML, Sher F. Integrating AI and advanced spectroscopic techniques for precision food safety and quality control. Trends Food Sci Technol. 2025;156:104850. doi: 10.1016/j.tifs.2024.104850.
Published
How to Cite
Issue
Section
Copyright (c) 2026 FAKEHA MOHAMMED REHAN SHAIKH, ASHISH SAMBHAJI UZGARE

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



