LECTIN NANOPARTICLES IN FOCUS: FROM FUNDAMENTALS TO FUTURE NANOTECHNOLOGIES-A REVIEW
DOI:
https://doi.org/10.22159/ijcr.2026v10i1.303Keywords:
Lectin, Nanotechnology, Functionalized nanoparticle, TherapeuticsAbstract
Nanotechnology, operating at the scale of 1–100 nanometers, is an interdisciplinary field driving innovations across medicine, agriculture, environmental science, and food technology. By enabling control at the atomic and molecular levels, it facilitates the development of novel materials and devices with enhanced properties. In agriculture, nanomaterials improve nutrient efficiency, pest control, and crop monitoring. In the food industry, they enhance shelf life, safety, and nutritional delivery. In medicine, nanotechnology has advanced applications in diagnostics, targeted drug delivery, and cancer therapies. A notable development is the use of lectin-functionalized nanoparticles, which leverage specific carbohydrate-binding properties for precise drug targeting and disease detection. Despite these benefits, concerns remain regarding environmental impact, nanoparticle toxicity, and insufficient regulation. The production of nanomaterials often involves energy-intensive and chemically hazardous processes, and their long-term effects on health and ecosystems are still unclear. This review highlights the classification, origin, and applications of nanomaterials, with emphasis on the emerging role of lectin-functionalized nanoparticles in targeted therapeutics. It underscores the importance of advancing nanotechnology responsibly, promoting innovation to ensure sustainable development.
Downloads
References
1. Sim SS, Wong NK. Nanotechnology and its use in imaging and drug delivery. Biomed Rep. 2021;14(5):42. doi: 10.3892/br.2021.1418, PMID 33728048.
2. Khan I, Saeed K, Khan I. Nanoparticles: properties applications and toxicities. Arab J Chem. 2019;12(7):908-31. doi: 10.1016/j.arabjc.2017.05.011.
3. Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An introduction to nanotechnology. Interface Sci Technol. 2019;28:1-27. doi: 10.1016/B978-0-12-813586-0.00001-8.
4. Rambaran T, Schirhagl R. Nanotechnology from lab to industry a look at current trends. Nanoscale Adv. 2022;4(18):3664-75. doi: 10.1039/D2NA00439A, PMID 36133326.
5. Srinivas PR, Philbert M, Vu TQ, Huang Q, Kokini JL, Saltos E. Nanotechnology research: applications in nutritional sciences. J Nutr. 2010;140(1):119-24. doi: 10.3945/jn.109.115048, PMID 19939997.
6. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine challenge and perspectives. Angew Chem Int Ed Engl. 2009;48(5):872-97. doi: 10.1002/anie.200802585, PMID 19142939.
7. Kovalenko VL, Komedchikova EN, Sogomonyan AS, Tereshina ED, Kolesnikova OA, Mirkasymov AB. Lectin modified magnetic nano-PLGA for photodynamic therapy in vivo. Pharmaceutics. 2022;15(1):92. doi: 10.3390/pharmaceutics15010092, PMID 36678721.
8. Shaikh Fakeha MR, Uzgare AS. Partial purification and characterization of a lectin like protein from Terminalia catappa seeds. Res J Chem Environ. 2025;29(7):117-23. doi: 10.25303/297rjce1170123.
9. Shaikh FM, Uzgare AS. Study of lectin-like protein from Terminalia catappa (TC) seeds for its physicochemical and antimicrobial properties. In: Proceedings of the 28th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-28), Basel, Switzerland. Chem Proc. 2024;16(1):75. doi: 10.3390/ecsoc-28-20179.
10. Singh A, Parashar T, Khan A, Jakhmola V. Synthesis and method of nanoparticles and their applications an exhaustive review. IJDDT. 2024;14(2):1071-6. doi: 10.25258/ijddt.14.2.71.
11. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods properties recent progress and challenges. Mater Adv. 2021;2(6):1821-71. doi: 10.1039/D0MA00807A.
12. Prasad Yadav T, Manohar Yadav R, Pratap Singh D. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol. 2012;2(3):22-48. doi: 10.5923/j.nn.20120203.01.
13. Altammar KA. A review on nanoparticles: characteristics synthesis applications and challenges. Front Microbiol. 2023;14:1155622. doi: 10.3389/fmicb.2023.1155622, PMID 37180257.
14. Sebastian EM, Jain SK, Purohit R, Dhakad SK, Rana RS. Nanolithography and its current advancements. Mater Today Proc. 2020;26(2):2351-6. doi: 10.1016/j.matpr.2020.02.505.
15. Larosi MB, Garcia JD, Rodriguez AR. Laser synthesis of nanomaterials. Nanomaterials (Basel). 2022;12(17):2903. doi: 10.3390/nano12172903, PMID 36079941.
16. Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH. Nanomaterial by sol-gel method: synthesis and application. Adv Mater Sci Eng. 2021;2021(1):5102014. doi: 10.1155/2021/5102014.
17. Bera D, Kuiry SC, Seal S. Synthesis of nanostructured materials using template-assisted electrodeposition. JOM. 2004;56(1):49-53. doi: 10.1007/s11837-004-0273-5.
18. Gangwar N, Gangwar C, Sarkar J. A review on template-assisted approaches & self-assembly of nanomaterials at liquid/liquid interface. Heliyon. 2024;10(17):e36810. doi: 10.1016/j.heliyon.2024.e36810, PMID 39263084.
19. Karthikeyan J, Berndt CC, Tikkanen J, Reddy S, Herman H. Plasma spray synthesis of nanomaterial powders and deposits. Mater Sci Eng A. 1997;238(2):275-86. doi: 10.1016/S0921-5093(96)10568-2.
20. Kolahalam LA, Kasi Viswanath IV, Diwakar BS, Govindh B, Reddy V, Murthy YL. Review on nanomaterials: synthesis and applications. Mater Today Proc. 2019;18:2182-90. doi: 10.1016/j.matpr.2019.07.371.
21. Khan S, Hossain MK. Nanoparticle-based polymer composites. Vol. 1. London: Woodhead Publishing; 2022. p. 15.
22. Mekuye B, Abera B. Nanomaterials: an overview of synthesis classification characterization and applications. Nano Select. 2023;4(8):486-501. doi: 10.1002/nano.202300038.
23. Joudeh N, Linke D. Nanoparticle classification physicochemical properties characterization and applications: a comprehensive review for biologists. J Nanobiotechnol. 2022;20(1):262. doi: 10.1186/s12951-022-01477-8.
24. Patel KD, Singh RK, Kim HW. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz. 2019;6(3):434-69. doi: 10.1039/C8MH00966J.
25. Gujrati M, Malamas A, Shin T, Jin E, Sun Y, Lu ZR. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm. 2014;11(8):2734-44. doi: 10.1021/mp400787s, PMID 25020033.
26. Alshammari BH, Lashin MM, Mahmood MA, Al Mubaddel FS, Ilyas N, Rahman N. Organic and inorganic nanomaterials: fabrication properties and applications. RSC Adv. 2023;13(20):13735-85. doi: 10.1039/D3RA01421E, PMID 37152571.
27. Luo G, Du L, Wang Y, Wang K. Composite nanoparticles. In: Li D, editor. Encyclopedia of microfluidics and nanofluidics. Boston: Springer US; 2014. p. 1-9. doi: 10.1007/978-3-642-27758-0_243-3.
28. Singh A, Suki M, Sharma R, Ingle P. Applications of nanotechnology: a review. Int J Adv Res Chem Sci. 2020;7(2):16-32. doi: 10.20431/2349-0403.0702004.
29. Osterne VJ, Nascimento KS, Cavada BS, Van Damme EJ. The future of plant lectinology: advanced technologies and computational tools. BBA Adv. 2025;7:100145. doi: 10.1016/j.bbadva.2025.100145, PMID 39958819.
30. Mohammed Rehan SF, Uzgare AS. A review of scalable and efficient techniques for the purification of lectins. Anal Bioanal Chem Res. 2025;12(3):259-68. doi: 10.22036/abcr.2025.494266.2249.
31. Rekha Mol KR, Mohamed Hatha AA. Use of lectin-functionalized and lectin-targeted nanoparticles for multiple therapeutic applications. In: Applications of multifunctional nanomaterials. Amsterdam: Elsevier; 2023. p. 543-66. doi: 10.1016/B978-0-12-820557-0.00023-0.
32. Bala Subramaniyan S, Veerappan A. Lectins as the prominent potential to deliver bioactive metal nanoparticles by recognizing cell surface glycans. Heliyon. 2024;10(8):e29394. doi: 10.1016/j.heliyon.2024.e29394.
33. Yasin U, Bilal M, Bashir H, Amirzada MI, Sumrin A, Asad MH. Preparation and nanoencapsulation of lectin from Lepidium sativum on chitosan-tripolyphosphate nanoparticle and their cytotoxicity against hepatocellular carcinoma cells (HepG2). BioMed Res Int. 2020;2020:7251346. doi: 10.1155/2020/7251346, PMID 33145357.
34. Punjabi K, Adhikary RR, Patnaik A, Bendale P, Saxena S, Banerjee R. Lectin-functionalized chitosan nanoparticle-based biosensor for point-of-care detection of bacterial infections. Bioconjug Chem. 2022;33(8):1552-63. doi: 10.1021/acs.bioconjchem.2c00299, PMID 35920551.
35. Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother. 2004;54(4):761-6. doi: 10.1093/jac/dkh411, PMID 15329364.
36. Wang J, Liu D, Wang Z. Synthesis and cell-surface binding of lectin-gold nanoparticle conjugates. Anal Methods. 2011;3(8):1745-51. doi: 10.1039/c1ay05151b.
37. Terava J, Tiainen L, Lamminmaki U, Kellokumpu Lehtinen PL, Pettersson K, Gidwani K. Lectin nanoparticle assays for detecting breast cancer-associated glycovariants of cancer antigen 15-3 (CA15-3) in human plasma. PLOS One. 2019;14(7):e0219480. doi: 10.1371/journal.pone.0219480, PMID 31344060.
38. Kumar BA, Ahmed N, Jamal S. Biosynthesis and characterization of silver nanoparticles (AgNPs) with jacalin a lectin from jackfruit seeds and its antiproliferative effects on HeLa cancer cells. Lett Appl NanoBioSci. 2024;13(3):106. doi: 10.33263/lIANBS133.106.
39. Lakshmi S, Rubeena AS, Subramaniyan SB, Raman T, Vaseeharan B, Arockiaraj J. Hybrid of Metapenaeus dobsoni lectin and platinum nanoparticles exert antimicrobial and immunostimulatory effects to reduce bacterial bioburden in infected Nile tilapia. Sci Rep. 2023;13(1):525. doi: 10.1038/s41598-022-26719-5, PMID 36631627.
40. Gidwani K, Huhtinen K, Kekki H, Van Vliet S, Hynninen J, Koivuviita N. A nanoparticle-lectin immunoassay improves discrimination of serum CA125 from malignant and benign sources. Clin Chem. 2016;62(10):1390-400. doi: 10.1373/clinchem.2016.257691, PMID 27540033.
41. Sanchez Pomales G, Morris TA, Falabella JB, Tarlov MJ, Zangmeister RA. A lectin-based gold nanoparticle assay for probing glycosylation of glycoproteins. Biotechnol Bioeng. 2012;109(9):2240-9. doi: 10.1002/bit.24513, PMID 22488121.
42. Budhadev D, Poole E, Nehlmeier I, Liu Y, Hooper J, Kalverda E. Glycan-gold nanoparticles as multifunctional probes for multivalent lectin-carbohydrate binding: implications for blocking virus infection and nanoparticle assembly. J Am Chem Soc. 2020;142(42):18022-34. doi: 10.1021/jacs.0c06793, PMID 32935985.
43. Ferreira JA, Daniel Da Silva AL, Alves RM, Duarte D, Vieira IA, Santos LL. Synthesis and optimization of lectin functionalized nanoprobes for the selective recovery of glycoproteins from human body fluids. Anal Chem. 2011;83(18):7035-43. doi: 10.1021/ac200916j, PMID 21809823.
44. Mohammad ZH, Ahmad F, Ibrahim SA, Zaidi S. Application of nanotechnology in different aspects of the food industry. Discov Food. 2022;2(1):1-21. doi: 10.1007/s44187-022-00013-9.
45. Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK. Application of nanotechnology in food science: perception and overview. Front Microbiol. 2017;8:1501. doi: 10.3389/fmicb.2017.01501, PMID 28824605.
46. Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V. Facets of nanotechnology as seen in food processing packaging and preservation industry. BioMed Res Int. 2015;2015:365672. doi: 10.1155/2015/365672, PMID 26613082.
47. Ubbink J, Kruger J. Physical approaches for the delivery of active ingredients in foods. Trends Food Sci Technol. 2006;17(5):244-54. doi: 10.1016/j.tifs.2006.01.007.
48. Biswas R, Alam M, Sarkar A, Haque MI, Hasan MM, Hoque M. Application of nanotechnology in food: processing preservation packaging and safety assessment. Heliyon. 2022;8(11):e11795. doi: 10.1016/j.heliyon.2022.e11795, PMID 36444247.
49. Das S, Jagan L, Isiah R, Rajesh B, Backianathan S, Subhashini J. Nanotechnology in oncology: characterization and in vitro release kinetics of cisplatin-loaded albumin nanoparticles: implications in anticancer drug delivery. Indian J Pharmacol. 2011;43(4):409-13. doi: 10.4103/0253-7613.83111, PMID 21844995.
50. Ejidike IP, Ogunleye O, Bamigboye MO, Ejidike OM, Ata A, Eze MO. Role of nanotechnology in medicine: opportunities and challenges. In: Shah MP, Bharadvaja N, Kumar L, editors. Biogenic nanomaterials for environmental sustainability: principles, practices and opportunities. Cham: Springer International Publishing; 2024. p. 353-75. doi: 10.1007/978-3-031-45956-6_14.
51. Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J. Nanotechnology in healthcare and its safety and environmental risks. J Nanobiotechnology. 2024;22(1):715. doi: 10.1186/s12951-024-02901-x, PMID 39548502.
52. Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res. 2023;28(1):537. doi: 10.1186/s40001-023-01429-4, PMID 38001554.
53. Karahmet Sher E, Alebic M, Markovic Boras M, Boskailo E, Karahmet Farhat E, Karahmet A. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm. 2024;660:124345. doi: 10.1016/j.ijpharm.2024.124345, PMID 38885775.
54. Yadav N. Application of nanotechnology in health sciences. Plant Arch. 2017;17(1):539-45.
55. Rabiei M, Sabereh Samavati S. The application of nanotechnology in the pharmaceutical treatment of common diseases. In: Umamaheswari A, Lakshmana Prabu S, editors. Dosage forms emerging trends and prospective drug-delivery systems. IntechOpen; 2024. doi: 10.5772/intechopen.1005467.
56. Haleem A, Javaid M, Singh RP, Rab SR, Suman R. Applications of nanotechnology in medical field: a brief review. Glob Health. 2023;7(2):70-7. doi: 10.1016/j.glohj.2023.02.008.
57. Yavuz G, Yilmaz E, Halvaci E, Catal C, Turk I, Maran F. Nanotechnology in medical applications: recent developments in devices and materials. J Sci Rep C. 2023;5:1–32. doi: 10.55736/jsr-c.2023.005.
58. Mgadi K, Ndaba B, Roopnarain A, Rama H, Adeleke R. Nanoparticle applications in agriculture: overview and response of plant-associated microorganisms. Front Microbiol. 2024;15:1354440. doi: 10.3389/fmicb.2024.1354440, PMID 38511012.
59. Balusamy SR, Joshi AS, Perumalsamy H, Mijakovic I, Singh P. Advancing sustainable agriculture: a critical review of smart and eco-friendly nanomaterial applications. J Nanobiotechnology. 2023;21(1):372. doi: 10.1186/s12951-023-02135-3, PMID 37821961.
60. Fraceto LF, Grillo R, De Medeiros GA, Scognamiglio V, Rea G, Bartolucci C. Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci. 2016;4:20. doi: 10.3389/fenvs.2016.00020.
61. Umesha MK, Seshagiri S, Kumar H, Shivashankara NG, Surynan S. Agricultural application of nanotechnology in plant growth and protection: a review. Lett Appl NanoBioSci. 2024;13(2):82. doi: 10.33263/lIANBS132.082.
62. Abobatta WF. Nanotechnology application in agriculture. Acta Sci Agric. 2018;2(6):99–102.
63. Daniel AI, Husselmann L, Shittu OK, Gokul A, Keyster M, Klein A. Application of nanotechnology and proteomic tools in crop development towards sustainable agriculture. J Crop Sci Biotechnol. 2024;27(3):359-79. doi: 10.1007/s12892-024-00235-6.
64. Bratovcic A, Hikal WM, Mehdizadeh M, Al Ahl HA, Omidi A, Adetunji CO. Application of nanotechnology in agroecosystems: nanoparticles for improving agricultural production. Rev Agric Sci. 2023;11:291-309. doi: 10.7831/ras.11.0_291.
65. Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem. 2020;68(7):1935-47. doi: 10.1021/acs.jafc.9b06615, PMID 32003987.
66. Aghababai Beni A, Jabbari H. Nanomaterials for environmental applications. Results Eng. 2022;15:100467. doi: 10.1016/j.rineng.2022.100467.
67. Taran M, Safaei M, Karimi N, Almasi A. Benefits and application of nanotechnology in environmental science: an overview. Biointerface Res Appl Chem. 2020;11(1):7860-70. doi: 10.33263/BRIAC111.78607870.
68. Pathakoti K, Manubolu M, Hwang HM. Nanotechnology applications for environmental industry. In: Handbook of nanomaterials for industrial applications. Elsevier; 2018. p. 894-907. doi: 10.1016/B978-0-12-813351-4.00050-X.
69. Guerra FD, Attia MF, Whitehead DC, Alexis F. Nanotechnology for environmental remediation: materials and applications. Molecules. 2018;23(7):1760. doi: 10.3390/molecules23071760, PMID 30021974.
70. Laxmi V, Singhvi N, Ahmad N, Sinha S, Negi T, Gupta V. Emerging field of nanotechnology in environment. Indian J Microbiol. 2023;63(3):244-52. doi: 10.1007/s12088-023-01092-7, PMID 37781004.
71. Santos C, Gabriel B, Blanchy M, Neto V. Industrial applications of nanoparticles a prospective overview. Mater Today Proc. 2014. p. 2-14. doi: 10.13140/2.1.5100.6726.
72. Subhan MA, Choudhury KP, Neogi N. Advances with molecular nanomaterials in industrial manufacturing applications. Nanomanufacturing. 2021;1(2):75-97. doi: 10.3390/nanomanufacturing1020008.
73. Prasad SR, Kumbhar VB, Prasad NR. Applications of nanotechnology in textile: a review. ES Food Agrofor. 2023;15:1-19. doi: 10.30919/esfaf1019.
74. Nakkeeran S. Nanotechnology in environmental application. Int J Biotech Trends Technol. 2011;1(3):16-23.
75. Stark WJ, Stoessel PR, Wohlleben W, Hafner A. Industrial applications of nanoparticles. Chem Soc Rev. 2015;44(16):5793-805. doi: 10.1039/C4CS00362D, PMID 25669838.
76. Bhattacharya K, Mukherjee SP, Gallud A, Burkert SC, Bistarelli S, Bellucci S. Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine. 2015;12(2):333-51. doi: 10.1016/j.nano.2015.11.011, PMID 26707820.
77. Chen H, Yada R. Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol. 2011;22(11):585-94. doi: 10.1016/j.tifs.2011.09.004.
78. Roco MC, Bainbridge WS. Societal implications of nanoscience and nanotechnology: maximizing human benefit. J Nanopart Res. 2005;7(1):1-13. doi: 10.1007/s11051-004-2336-5.
79. Gupta RK, Gawad FA, Ali EA, Karunanithi S, Yugiani P, Srivastav PP. Nanotechnology: current applications and future scope in food packaging systems. Meas Food. 2024;13:100131. doi: 10.1016/j.meafoo.2023.100131.
80. Wen Y. A review of applications and future prospects of nanotechnology. ACE. 2024;56(1):135-40. doi: 10.54254/2755-2721/56/20240640.
81. Singh N. Nanotechnology and its potential in the future. J Nanosci Nanoeng Appl. 2022;12(1):45-52.
Published
How to Cite
Issue
Section
Copyright (c) 2026 FAKEHA MOHAMMED REHAN SHAIKH, ASHISH SAMBHAJI UZGARE

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



