SCREENING OF LACCASE AND MANGANESE PEROXIDASE ACTIVITIES PRODUCED BY ESCHERICHIA COLI AND PENICILLIUM ITALICUM ISOLATED FROM PLASTIC WASTE SITE IN AKURE, NIGERIA
DOI:
https://doi.org/10.22159/ijcr.2024v8i1.227Keywords:
Polyethylene (PE), Biodegradation, Manganese peroxidase (MnP), Penicillium Italicum (PI), LaccaseAbstract
Objective: To determine the microbial growth of Echerichia coli and Penicillium Italicum on polyethylene (PE) and screen for the activities of Manganese Peroxidase (MnP) and Laccase produced by the two microbial strain (Echerichia coli and Penicillium Italicum).
Methods: Polyethylene (PE) used were obtained from Elizade university dumpsite Ilara-mokin, Ondo State. The polyethylene (PE) were cut into tiny pieces, rinsed with distilled water and then used as the sole carbon source for the growth of microorganisms in an orbital shaker flask. Laccase and manganese (Mnp) peroxidase activity were assayed in Escherichia coli and Penicillium italicum spectrophometrically as they utilize polyethylene (PE) as a carbon source.
Results: Escherichia coli growth was at 0.002 at 0 h, rose to the exponential phase at 96 h, and declined to the death phase at 144 h. Penicillium italicum growth was at 0.004 at 0 h, rose to the exponential phase at 72 h, and declined to the death phase at 144 h. Laccase activity was 9.2 (U/ml) in Echerichia coli and manganese peroxidase (MnP)was 5.25 (U/ml) in Echerichia coli. Manganese peroxidase (MnP) was 10.643(U/ml) in Penicillium italicum while laccase activity was 9.5(U/ml) in Penicillium italicum.
Conclusion: Echerichia coli and penicillium italicum showed Manganese peroxidase and Lacasse activities as they utilized polyethylene (PE) as carbon source. Hence, they should be explored for biodegradation of polyethylene (PE).
Downloads
References
Demirbas A. Biodegradable plastics from renewable resources. Energy Sources Part A: Recovery Utilization and Environmental Effects. 2007;29(5):419-24. doi: 10.1080/009083190965820.
Andrady AL, Neal MA. Applications and societal benefits of plastics. Philos Trans R Soc Lond B Biol Sci. 2009;364(1526):1977-84. doi: 10.1098/rstb.2008.0304, PMID 19528050.
Tokiwa Y, Ugwu CU. Biotechnological production of (R)-3-hydroxybutyric acid monomer. J Biotechnol. 2007;132(3):264-72. doi: 10.1016/j.jbiotec.2007.03.015, PMID 17543411.
Siddiqui MN, Gondal MA, Redhwi HH. Identification of different type of polymers in plastics waste. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008;43(11):1303-10. doi: 10.1080/10934520802177946, PMID 18642154.
Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. Int J Mol Sci. 2009;10(9):3722-42. doi: 10.3390/ijms10093722, PMID 19865515.
Restrepo Florez JM, Bassi A, Thompson MR. Microbial degradation and deterioration of polyethylene-a review. Int Biodeterior Biodegrad. 2014;88:83-90. doi: 10.1016/j.ibiod.2013.12.014.
Watanabe M, Kawai F, Shibata M, Yokoyama S, Sudate Y. Computational method for analysis of polyethylene biodegradation. J Comput Appl Math. 2003;161(1):133-44. doi: 10.1016/S0377-0427(03)00551-X.
Yang J, Yang Y, Wu WM, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol. 2014;48(23):13776-84. doi: 10.1021/es504038a, PMID 25384056.
Bombelli P, Howe CJ, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol. 2017;27(8):R292-3. doi: 10.1016/j.cub.2017.02.060, PMID 28441558.
Pasieczna Patkowska S, Lesiuk A. Chemik. 2013;67:863-72.
Sterfan B, Czeslaw S, Zofia Z, Helena S. Biodegradation of films of polyethylene modified with starch. Studies on changes in the supramolecular structure of polyethylene. Polimery (Warsaw, Poland). 2004;49(6):424-31.
Mohan KS, Srivastava T. J Biochem Technol. 2010;2:210-5.
Cohen R, Persky L, Hadar Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol. 2002;58(5):582-94. doi: 10.1007/s00253-002-0930-y, PMID 11956739.
Wang X, Yao B, Su X. Linking enzymatic oxidative degradation of lignin to organics detoxification. Int J Mol Sci. 2018;19(11):3373. doi: 10.3390/ijms19113373, PMID 30373305.
Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol. 1995;61(5):1876-80. doi: 10.1128/aem.61.5.1876-1880.1995, PMID 7646025.
Hunter Christie L, Maurus R, Marcia R, Lee MH, Emma L, Raven. Harry Tong, Nham Nguyen, Michael Smith, Gary D, Brayer A, Grant Mauk. Introduction and characterization of a functionally linked metal ion binding site at the exposed heme edge of myoglobin. Proceedings of the National Academy of Sciences. 2003;100(7):3647-52. https://doi.org/10.1073/pnas.0636702100.
Vaikosen EN, Bunu SJ, Dode E, Efidi RB. Spectrophotometric fingerprinting and chemical determination of streptomycin, amikacin, neomycin, and gentamycin sulphate by condensing with Ninhydrin reagent. Int J Chem Res. 2023;7:5-10. doi: 10.22159/ijcr.2023v7i3.221.
Sowmya HV, Ramalingappa KM, Krishnappa M, Thippeswamy B. Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of shivamogga district. Environ Dev Sustain. 2015;17(4):731-45. doi: 10.1007/s10668-014-9571-4.
Published
How to Cite
Issue
Section
Copyright (c) 2024 TIMINIBEFI D. ZIGE, OGUNJEMITE O. E.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.