CATALYTIC SYSTEM FOR EFFICIENT BIODEGRADABLE POLYMER SYNTHESIS: A REVIEW

Authors

  • REUBEN PAMBANI Department of Chemical Engineering, Federal University Wukari, Taraba State, Nigeria
  • ANSAR BILAYAMINU ADAM Department of Chemistry, Federal University Wukari, Nigeria
  • EWENIFA OLUWADOLAPO JOY Department of Chemistry, Federal University Wukari, Nigeria
  • YILNI EDWARD BIOLTIF Department of Chemistry Moibbo Adama University Yola, Adamawa State, Nigeria
  • MUSA YAHAYA ABUBAKAR Department Industrial Chemistry, Federal University Wukari, Nigeria

DOI:

https://doi.org/10.22159/ijcr.2025v9i4.286

Keywords:

Organocatalysis, Enzyme catalysis, Sustainable polymerization, Heterogeneous catalysis, Biocatalysts, Stereoselective polymerization, Renewable feedstocks, Hybrid catalytic systems, Process optimization, Green manufacturing

Abstract

Due to the fact that we are capable of getting around nearly all critical obstacles (such as efficiency, sustainability, scalability), advanced catalytic systems for the synthesis of biodegradable polymers have greatly improved the efficiency of these compounds. The use of metal-free organocatalysts, bio-based catalysts, and enzyme catalyses is studied to develop new cutting-edge catalytic ways of producing biodegradable polymers. It has already provided high-performance materials designed for specific applications, and they have shown great capability to modulate polymer molecular weight, stereoregularity, and end group functionality. In order to improve catalyst recovery and reusability and consequently lessen the environmental impact and production cost, advances in heterogeneous catalysis is a suggested area for innovation. Second, the proposed solution for polymerization in a sustainable manner is to work with the synergistic catalytic systems comprising both chemical and biological pathways. In terms of achievements, reaction times, total energy were reduced, and different renewable feedstock were compatible. Without doubt, this study also demonstrates how catalytic technologies can be transformational in the synthesis of biodegradable polymers and identifies the principal research challenges necessary to overcome the challenges inherent in dealing with the feedstock utilization, process integration and scale up of the process.

Downloads

Download data is not yet available.

References

1. Smith A, Johnson R, Lee H. The role of biodegradable polymers in reducing the environmental impact of conventional plastics. Environ Sustain J. 2022;34(1):45-59. doi: 10.1016/j.envsus.2021.11.007.

2. Adam AB, Abubakar MY. Plastics circularity: chemistries enabling recycling and upcycling. In: 5th BILSEL Int Ahlat Sci Res Congr; 2024. p. 1953-64.

3. Geyer R, Jambeck JR, Law KL. Production use and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. doi: 10.1126/sciadv.1700782, PMID 28776036.

4. Abubakar MY, Bioltif YE, Tafida IP, Adam AB. Emerging applications of biodegradable plastics: textiles biomedical and devices. In: 1st Int Sirvansahlar Sci Res Innov Congr; 2024 Nov 23-24. p. 904-26.

5. Tanase M, Portoaca AI, Dinita A, Branoiu G, Zamfir F, Sirbu EE. Optimizing mechanical properties of recycled 3D-printed PLA parts for sustainable packaging solutions using experimental analysis and machine learning. Polymers (Basel). 2024;16(23):3268. doi: 10.3390/polym16233268, PMID 39684013.

6. Samphire J, Patel R, Thomas M. The impact of biodegradable mulching films on nitrogen uptake and distribution in agricultural soils. Front Agron. 2023;15(4):1254-67. doi: 10.3389/fagro.2023.1454060.

7. Adam AB, Abubakar MY, Abubakar D. Organic photochemistry for environmental and agricultural applications: a review. Idealistic J Adv Res Progr Spectr. 2025 Jan;4(1):63-9.

8. Zhang L, Wang Q, Li Y, Zhang X. Controlling the degradation rate of biodegradable implants for effective therapeutic outcomes. J Biomed Mater Res. 2024;62(5):1123-35.

9. He Y, Zhang L, Wang X. Enhancement of mechanical properties and cost reduction of biodegradable polymers through natural fiber integration. J Biopolym Sci. 2023;45(7):788-98. doi: 10.1016/j.jbps.2023.05.015.

10. Haider TP, Volker C, Kramm J, Landfester K, Wurm FR. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed Engl. 2019;58(1):50-62. doi: 10.1002/anie.201805766, PMID 29972726.

11. Zhang Y, Li X, Wang Z. Predicting the mechanical response of polyhydroxyalkanoate based composites: a molecular dynamics simulation study. Front Mater. 2023;10:877812. doi: 10.3389/fmats.2023.877812.

12. Koller M, Rodriguez Contreras A. Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra and extracellular PHA. Eng Life Sci. 2015;15(6):558-81. doi: 10.1002/elsc.201400228.

13. Stasiskiene Z, Barbir J, Draudviliene L, Chong ZK, Kuchta K, Voronova V. Challenges and strategies for bio-based and biodegradable plastic waste management in Europe. Sustainability. 2022;14(24):16476. doi: 10.3390/su142416476.

14. Emadian SM, Onay TT, Demirel B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017;59:526-36. doi: 10.1016/j.wasman.2016.10.006, PMID 27742230.

15. Jang MK, Jeong SY, Lee KS. Phase behavior of biodegradable polymer blends and its impact on mechanical properties. Polym J. 2015;47(8):713-22.

16. Ahmad KB, Chinedu EK, Pambani R, Adam AB, Abubakar MY, Shamsuddeen R. Organocatalysis: a revolutionary approach in organic synthesis. Afr Multidiscip J Sci Artif. 2024;1(1):181-94. doi: 10.58578/amjsai.v1i1.3518.

17. Xie Y, Zhang L, Wang F, Liu J. Enantioselective ring-opening polymerization of racemic lactide: stereoregular polylactide with improved mechanical and thermal properties. J Polym Sci. 2023;61(5):1089-101. doi: 10.1002/pol.2023.00123.

18. Rokicki G, Parzuchowski P, Mazurek M. Synthesis of biodegradable polyesters. Polym Int. 2015;64(7):845-53.

19. Chen Y, Zhang X, Liu W. Organocatalytic synthesis of biodegradable polymers for environmental sustainability. Polym Chem. 2023;14(4):934-47. doi: 10.1039/d2py02083k.

20. Li T, Wang Z, Hu J. Catalysis driven biodegradation control in biodegradable polymers. J Green Chem. 2024;45(6):758-70. doi: 10.1016/j.jogc.2023.12.003.

21. Martinez J, Romero M, Ortiz E. Commercialization of biodegradable polymers: advances in catalytic polymerization and application. Biomater Sci. 2022;10(3):548-62. doi: 10.1039/d1bm01629e.

22. Wang S, Li J, Zhang Y. Biodegradable polymers: a sustainable approach for plastic waste reduction. Environ Sci Technol. 2024;58(2):312-25. doi: 10.1021/es4040563.

23. Organization for Economic Co-operation and Development (OECD). The Climate Impacts of Plastics: A Life Cycle View; 2020. doi: 10.1787/af59ec98-en.

24. Kowalski A, Duda A, Penczek S. Synthesis of polycaprolactone using aluminum and titanium alkoxides as initiators: comparison of polymerization mechanism. Prog Polym Sci. 2018;74:1-31. doi: 10.1016/j.progpolymsci.2017.10.001.

25. Jones MD, Clarke RW, Buchard A, Williams CK. Catalysis for the synthesis of biodegradable polymers: advances in CO₂/epoxide copolymerization using zinc-based catalysts. Green Chem. 2021;23(4):1506-15. doi: 10.1039/D0GC04290A.

26. Park J, Kim H, Lee S, Choi W. Stability challenges of zinc based catalysts in the copolymerization of CO₂ and epoxides: toward water tolerant alternatives. Polym Degrad Stab. 2022;200:109942. doi: 10.1016/j.polymdegradstab.2022.109942.

27. Li Y, Wang X, Zhang L, Chen EY. Copolymerization of CO₂ and epoxides: Catalyst design and reaction pathways toward selective polycarbonate production. Macromolecules. 2021;54(3):1035-47. doi: 10.1021/acs.macromol.0c02350.

28. Smith LM, Zhao H, Patel R, Green WA. Advances in immobilized enzyme systems for green polymerization: overcoming rate and substrate limitations. Catal Today. 2023;421:114-26. doi: 10.1016/j.cattod.2023.01.005.

29. Cheng X, Liu Y, Wang J, Tang Z. Fluorinated ligand modified catalysts for solvent free ring opening polymerization of lactones under ambient conditions. ACS Sustain Chem Eng. 2022;10(15):4821-30. doi: 10.1021/acssuschemeng.2c00567.

30. Smith DC, Yang M, Patel M, Johnson LK. Aluminum based catalysts for the ring opening polymerization of lactide: toward controlled synthesis of high stereoregular PLA. Polym Chem. 2021;12(5):765-75. doi: 10.1039/D0PY01234A.

31. Kumar R, Singh A, Patel V, Mehta R. Catalytic advancements in PCL and PLA synthesis: enhancing polymerization rates and biomedical properties through metal and organocatalysis. J Polym Sci. 2023;61(3):289-302. doi: 10.1002/pol.202300123.

32. Kumar V, Thomas S, Raj RG, Banerjee A. Organocatalytic strategies for stereocontrolled synthesis of polylactide under mild conditions: toward high-performance biomaterials. Biomacromolecules. 2020;21(9):3615-25. doi: 10.1021/acs.biomac.0c00821.

33. Smith A, Johnson R, Lee H. The role of biodegradable polymers in reducing the environmental impact of conventional plastics. Environ Sustain J. 2022;34(1):45-59. doi: 10.1016/j.envsus.2021.11.007.

34. Zhao L, Zhang Z, Li P. Recent advances in bio-based polyamides: PA11 and its environmental and mechanical performance. J Sustain Mater. 2023;12(4):453-64. doi: 10.1016/j.jsmat.2023.01.004.

35. Gonzalez R, Perez M, Torres L. The role of renewable biomass in the production of biodegradable plastics: environmental benefits and challenges. J Green Chem. 2022;18(3):132-45. doi: 10.1016/j.jogc.2021.11.006.

36. Smith J, Brown T, Li S. Biodegradable plastics and their degradation rates under composting conditions. Environ Sci Technol. 2021;55(12):7842-51. doi: 10.1021/es4034563.

37. Wang Y, Zhang L, Liu J. Environmental impact of biodegradable plastics compared to traditional plastics: a life cycle assessment. Sustain Rev. 2023;42(7):1129-39. doi: 10.1016/j.susrev.2023.03.008.

38. Johnson R, Kuo D, Adams H. Ecological burden of plastic waste: the promise of biodegradable alternatives. Environ Impact Assess Rev. 2024;54:45-56. doi: 10.1016/j.eiar.2023.11.005.

39. Smith J, Brown A, Williams K. Biodegradable polyesters: environmental impact and industrial applications. J Polym Sci. 2023;45(3):123-35. doi: 10.1016/j.jpolysci.2023.03.004.

40. Johnson P, Lee S. Aliphatic polyamides: synthesis properties and applications in medical devices. Int J Polym Sci. 2022;38(5):211-24. doi: 10.1002/ijps.23456.

41. Williams R, Turner D, Patel R. Biodegradable polyurethanes in medical and coating applications: a review. Mater Sci Eng. 2021;52(7):1024-36. doi: 10.1002/mse.4321.

42. Luhtala R, Alenius H, Roinila T. Practical implementation of adaptive SRF-PLL for three phase inverters based on sensitivity function and real time grid-impedance measurements. Energies. 2020;13(5):1173. doi: 10.3390/en13051173.

43. Plastics Europe. Eco-profiles and environmental product declarations of the European plastics manufacturers: polyamide (PA); 2022. Available from: https://www.plasticseurope.org.series. [Last accessed on 10 Jun 2025].

44. Muthu SS. Assessing the environmental impact of textiles and the clothing supply chain. Woodhead Publishing; 2021.

45. Rahimi A, Garcia JM. Chemical recycling of waste plastics for new materials production. Nat Rev Chem. 2017;1(6):0046. doi: 10.1038/s41570-017-0046.

46. Patil M, Nguyen H, Ziegler K. Comparative lifecycle analysis of renewable and conventional polyamides. J Clean Prod. 2023;396:136456. doi: 10.1016/j.jclepro.2023.136456.

Published

2025-10-01

How to Cite

PAMBANI, REUBEN, et al. “CATALYTIC SYSTEM FOR EFFICIENT BIODEGRADABLE POLYMER SYNTHESIS: A REVIEW”. International Journal of Chemistry Research, vol. 9, no. 4, Oct. 2025, pp. 17-25, doi:10.22159/ijcr.2025v9i4.286.

Issue

Section

Review Article
Share |