ISONICOTINOHYDRAZIDE DERIVED SCHIFF BASE–TRANSITION METAL COMPLEXES: STRUCTURE WITH BIOLOGICAL ACTIVITY

Authors

  • AL AKRAMULLAZI Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi-6205, Bangladesh https://orcid.org/0009-0004-8711-0508
  • SABIHA SULTANA Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi-6205, Bangladesh https://orcid.org/0009-0004-8711-0508
  • FARUK HOSSEN Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi-6205, Bangladesh https://orcid.org/0000-0002-3839-934X
  • ALI ASRAF Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi-6205, Bangladesh
  • KUDRAT-E-ZAHAN Department of Chemistry, Faculty of Science, Rajshahi University, Rajshahi-6205, Bangladesh https://orcid.org/0000-0001-8159-5293

DOI:

https://doi.org/10.22159/ijcr.2024v8i3.230

Keywords:

Synthesis, Schiff bases, Metal complexes, Characterization, Biological activity

Abstract

Objective: Antimicrobials are medications used for preventing and treating infectious diseases in humans, animals, and plants. Antimicrobial resistance is increasingly becoming a prominent global public health and developmental concern. The primary aim of this study is to synthesize metal complexes with superior antimicrobial properties.

Methods: The Schiff base ligand (E)-N'-(1-thiophen-2-yl) ethylidene isonicotinohydrazide was synthesized by reacting isonicotinohydrazide (INH) with 2-acetylthiophene. This Schiff base was utilized to synthesize metal complexes with copper (II), nickel (II), and cobalt (II) ions via the reflux method. The ligand and metal complexes were characterized using various physicochemical techniques, including elemental analysis, conduct metric studies, magnetic susceptibility, FT‐IR, 1H NMR, ESI-MS, and electronic spectral analysis.

Results: All complexes were successfully characterized. The Ni-complex demonstrated the highest cytotoxicity in the brine shrimp lethality bioassay compared to the Cu and Co-complexes. The Ni and Cu-complexes exhibited greater antibacterial efficacy against all bacteria, while the Co-complex showed no activity.

Conclusion: The newly synthesized complexes proved to be highly stable, displaying significant antimicrobial potential. These findings suggest that future modifications to this synthesized series could address specific pharmaceutical needs.

Downloads

Download data is not yet available.

References

More G, Bootwala S, Shenoy S, Mascarenhas J, Aruna K. Synthesis, characterization and in vitro antitubercular and antimicrobial activities of new aminothiophene schiff bases and their Co(II), Ni(II), Cu(II) and Zn(II) metal complexes. Orient J Chem. 2018;34(2):800-12. doi: 10.13005/ojc/340225.

Nazim U, Ali SI, Ishrat G, Hassan A, Ahmed M, Ali M. Synthesis, characterization and SEM studies of novel 1-indanyl isoniazid and hydrazide Schiff base derivatives as new anti-tubercular agents. Pak J Pharm Sci. 2020;33(3):1095-103. doi: 10.36721/PJPS.2020.33.3, PMID 33191234.

Dueke Eze CU, Fasina TM, Oluwalana AE, Familoni OB, Mphalele JM, Onubuogu C. Synthesis and biological evaluation of copper and cobalt complexes of (5-substituted-salicylidene) isonicotinichydrazide derivatives as antitubercular agents. Sci Afr. 2020;9:e00522. doi: 10.1016/j.sciaf.2020.e00522.

Judge V, Narasimhan B, Ahuja M. Isoniazid: the magic molecule. Med Chem Res. 2012;21(12):3940-57. doi: 10.1007/s00044-011-9948-y.

Quan D, Nagalingam G, Payne R, Triccas JA. New tuberculosis drug leads from naturally occurring compounds. Int J Infect Dis. 2017;56:212-20. doi: 10.1016/j.ijid.2016.12.024, PMID 28062229.

Kotapalli SS, Nallam SS, Nadella L, Banerjee T, Rode HB, Mainkar PS. Identification of new molecular entities (NMEs) as potential leads against tuberculosis from open-source compound repository. Plos One. 2015;10(12):e0144018. doi: 10.1371/journal.pone.0144018, PMID 26642200.

Jeyaraman P, Alagarraj A, Natarajan R. In silico and in vitro studies of transition metal complexes derived from curcumin–isoniazid Schiff base. J Biomol Struct Dyn. 2020;38(2):488-99. doi: 10.1080/07391102.2019.1581090, PMID 30767624.

Ferraresi Curotto V, Echeverría GA, Piro OE, Pis-Diez R, Gonzalez Baro AC. Synthesis and characterization of a series of isoniazid hydrazones. Spectroscopic and theoretical study. J Mol Struct. 2017;1133:436-47. doi: 10.1016/j.molstruc.2016.12.018.

Aggarwal RC, Singh NK, Singh RP. Synthesis and structural studies of some first-row transition metal complexes of salicylaldehyde hydrazone. Inorg Chim Acta. 1979;32:L87-90. doi: 10.1016/S0020-1693(00)91625-6.

Anten JA, Nicholls D, Markopoulos JM, Markopoulou O. Transition-metal complexes of hydrazones derived from 1,4-diformyl- and 1,4-diacetylbenzenes. Polyhedron. 1987;6(5):1075-80. doi: 10.1016/S0277-5387(00)80958-4.

Hunoor RS, Patil BR, Badiger DS, Vadavi RS, Gudasi KB, Chandrashekhar VM. Spectroscopic, magnetic and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 3-acetylcoumarin-isonicotinoylhydrazone and their antimicrobial and anti-tubercular activity evaluation. Spectrochim Acta A Mol Biomol Spectrosc. 2010;77(4):838-44. doi: 10.1016/j.saa.2010.08.015, PMID 20833102.

Ramya Rajan MP, Rathikha R, Nithyabalaji R, Sribalan R. Synthesis, characterization, in silico studies and in vitro biological evaluation of isoniazid-hydrazone complexes. J Mol Struct. 2020;1216. doi: 10.1016/j.molstruc.2020.128297.

Dueke Eze CU, Fasina TM, Oluwalana AE, Familoni OB, Mphalele JM, Onubuogu C. Synthesis and biological evaluation of copper and cobalt complexes of (5-substituted-salicylidene) isonicotinichydrazide derivatives as antitubercular agents. Sci Afr. 2020;9:e00522. doi: 10.1016/j.sciaf.2020.e00522.

Sharma KK, Singh R, Fahmi N, Singh RV. Synthesis, coordination behavior, and investigations of pharmacological effects of some transition metal complexes with isoniazid schiff bases. J Coord Chem. 2010;63(17):3071-82. doi: 10.1080/00958972.2010.504986.

Silva PB, Souza PC, Calixto GM, Lopes Ede O, Frem RC, Netto AV. In vitro activity of copper (II) complexes, loaded or unloaded into a nanostructured lipid system, against mycobacterium tuberculosis. Int J Mol Sci. 2016;17(5). doi: 10.3390/ijms17050745, PMID 27196901.

Trzesowska Kruszynska A. Solvent-free and catalysis-free approach to the solid state in situ growth of crystalline isoniazid hydrazones. Cryst Growth Des. 2013;13(9):3892-900. doi: 10.1021/cg400529s.

Hunoor RS, Patil BR, Badiger DS, Vadavi RS, Gudasi KB, Chandrashekhar VM. Spectroscopic, magnetic and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 3-acetylcoumarin-isonicotinoylhydrazone and their antimicrobial and anti-tubercular activity evaluation. Spectrochim Acta A Mol Biomol Spectrosc. 2010;77(4):838-44. doi: 10.1016/j.saa.2010.08.015, PMID 20833102.

Zarafu I, Badea M, Ionita G, Chifiriuc MC, Bleotu C, Popa M. Thermal, spectral and biological characterisation of copper(II) complexes with isoniazid-based hydrazones. J Therm Anal Calorim. 2019;136(5):1977-87. doi: 10.1007/s10973-018-7853-z.

Kulkarni GS, Anandgaonker PL, Janrao SD, Gaikwad DD, Janrao DM. Synthesis, characterization and biological evaluation of transition metal complexes M(II) derived from n. o bidentate ligands. Int J Mol Sci. 2015 May 15;16(5):11034-54. doi: 10.3390/ijms160511034.

Ahmed M, Rooney D, McCann M, Devereux M, Twamley B, Galdino AC, Sangenito lS, Souza lO, lourenço MC, Gomes K, Dos Santos AL. Synthesis and antimicrobial activity of a phenanthroline-isoniazid hybrid ligand and its Ag+and Mn 2+complexes. BioMetals. 2019;32:671-82. doi: 10.1007/s10534-019-00204-5.

Trzesowska Kruszynska A. Solvent-free and catalysis-free approach to the solid state in situ growth of crystalline isoniazid hydrazones. Cryst Growth Des. 2013;13(9):3892-900. doi: 10.1021/cg400529s.

Camellia FK, Ashrafuzzaman M, Islam MN, Banu LA, Kudrat-E-Zahan M. Synthesis, characterization, antibacterial and antioxidant studies of isoniazid-based Schiff base ligands and their metal complexes. AJACR. 2022;11:8-23. doi: 10.9734/AJACR/2022/v11i330257.

Chu LF, Shi Y, Xu DF, Yu H, Lin JR, He QZ. Synthesis and biological studies of some lanthanide complexes of schiff base. Synth React Inorg Metal-Organic Nano-Metal Chem. 2015;45(11):1617-26. doi: 10.1080/15533174.2015.1031048.

Kulkarni GS, Anandgaonker PL, Janrao SD, Gaikwad DD, Janrao DM. Synthesis, characterization and biological evaluation of transition metal complexes m (ii). Derived from n, o bidentate ligands. WJPR. 2016;5(4):707-14. doi: 10.20959/wjpr20164-5756.

Warad I, Bsharat O, Tabti S, Djedouani A, Al-Nuri M, Al-Zaqri N. Crystal interactions, computational, spectral and thermal analysis of (E)-N’-(thiophen-2-ylmethylene)isonicotinohydrazide as O-N-S-tridentate schiff base ligand. J Mol Struct. 2019;1185:290-9. doi: 10.1016/j.molstruc.2019.02.109.

Gordon SH, Mohamed A, Harry-O’Kuru RE, Imam SH. A chemometric method for correcting fourier transform infrared spectra of biomaterials for interference from water in KBr discs. Appl Spectrosc. 2010;64(4):448-57. doi: 10.1366/000370210791114301, PMID 20412631.

Ashrafuzzaman MD, Camellia FK, Mahmud AA, Pramanik MJ, Nahar K, Haque MM. Bioactive mixed ligand metal complexes of Cu(II), Ni(II), and Zn(II) ions: synthesis, characterization, antimicrobial and antioxidant properties. J Chil Chem Soc. 2021;66(3):5295-9. doi: 10.4067/S0717-97072021000305295.

Ahamad T, Nishat N, Parveen S. Synthesis, characterization and anti-microbial studies of a newly developed polymeric Schiff base and its metal-poly chelates. J Coord Chem. 2008;61(12):1963-72. doi: 10.1080/00958970701795698.

Warad I, Bsharat O, Tabti S, Djedouani A, Al-Nuri M, Al-Zaqri N. Crystal interactions, computational, spectral and thermal analysis of (E)-N’-(thiophen-2-ylmethylene)isonicotinohydrazide as O-N-S-tridentate schiff base ligand. J Mol Struct. 2019;1185:290-9. doi: 10.1016/j.molstruc.2019.02.109.

Baluja S, Solanki A, Kachhadia N. Evaluation of biological activities of some Schiff bases and metal complexes. J Iran Chem Soc. 2006;3(4):312-7. doi: 10.1007/BF03245952.

Zarafu I, Badea M, Ionita G, Chifiriuc MC, Bleotu C, Popa M. Thermal, spectral and biological characterisation of copper(II) complexes with isoniazid-based hydrazones. J Therm Anal Calorim. 2019;136(5):1977-87. doi: 10.1007/s10973-018-7853-z.

Camellia FK, Ashrafuzzaman M, Islam MN, Banu LA, Kudrat-E-Zahan M. Synthesis, characterization, antibacterial and antioxidant studies of isoniazid-based Schiff base ligands and their metal complexes. AJACR. 2022;11:8-23. doi: 10.9734/AJACR/2022/v11i330257.

Chu LF, Shi Y, Xu DF, Yu H, Lin JR, He QZ. Synthesis and biological studies of some lanthanide complexes of schiff base. Synth React Inorg Metal-Organic Nano-Metal Chem. 2015;45(11):1617-26. doi: 10.1080/15533174.2015.1031048.

Ahamad T, Nishat N, Parveen S. Synthesis, characterization and anti-microbial studies of a newly developed polymeric Schiff base and its metal-poly chelates. J Coord Chem. 2008;61(12):1963-72. doi: 10.1080/00958970701795698.

Song B, Yang S, Hong Y, Zhang G, Jin L, Hu D. Synthesis and bioactivity of fluorine compounds containing isoxazolylamino and phosphonate groups. J Fluor Chem. 2005;126(9-10):1419-24. doi: 10.1016/j.jfluchem.2005.08.005.

Tawaha KA. Cytotoxicity evaluation of Jordanian wild plants using brine shrimp lethality test. Jordan J Appl Sci Nat Sci. 2006;8(1):12.

Alam MS, Lee DU, Bari ML. Antibacterial and cytotoxic activities of schiff base analogues of 4-aminoantipyrine. J Korean Soc Appl Biol Chem. 2014;57(5):613-9. doi: 10.1007/s13765-014-4201-2.

Patel MN, Patel CR, Joshi HN. Synthesis, characterization and biological studies of mononuclear copper(II) complexes with ciprofloxacin and N, O donor ligands. Inorg Chem Commun. 2013;27:51-5. doi: 10.1016/j.inoche.2012.10.018.

Padmaja R, Arun PC, Prashanth D, Deepak M, Amit A, Anjana M. Brine shrimp lethality bioassay of selected Indian medicinal plants. Fitoterapia. 2002;73(6):508-10. doi: 10.1016/S0367-326X(02)00182-X, PMID 12385875.

Published

01-07-2024

How to Cite

AKRAMULLAZI, A., S. SULTANA, F. HOSSEN, A. ASRAF, and KUDRAT-E-ZAHAN. “ISONICOTINOHYDRAZIDE DERIVED SCHIFF BASE–TRANSITION METAL COMPLEXES: STRUCTURE WITH BIOLOGICAL ACTIVITY”. International Journal of Chemistry Research, vol. 8, no. 3, July 2024, pp. 1-9, doi:10.22159/ijcr.2024v8i3.230.

Issue

Section

Research Article
Share |