INVESTIGATION OF CANCER CELLS USING THIN LAYERS OF CADMIUM OXIDE (CdO)–DNA/RNA SANDWICHED COMPLEX COMPOSITE PLASMONIC NANOSTRUCTURE UNDER SYNCHROTRON RADIATION
DOI:
https://doi.org/10.22159/ijcr.2022v6i1.180Keywords:
Elimination, Cancer cells, Thin layers, Cadmium oxide (CdO), Plasmonic nanostructure, Synchrotron radiation, Triptycene barrelene anthracene (TBA), DNA/RNA, Polyether ether ketone (PEEK), Sandwiched complex, Composite, Anti–cancer-protective membraneAbstract
Triptycene Barrelene Anthracene (TBA) is a polycyclic aromatic hydrocarbon consisting of three benzene rings. The name TBA is a composite of phenyl and TBA. In its pure form, it is found in cigarette smoke and is a known irritant, photosensitizing skin and industrial carcinogenic wastewater. Cadmium Oxide (CdO) is an inorganic compound with the formula CdO. It is one of the main precursors to other cadmium compounds. It crystallizes in a cubic rocksalt lattice-like sodium chloride, with octahedral cation and anion centers. It occurs naturally as the rare mineral monteponite. CdO can be found as a colorless amorphous powder or as brown or red crystals. CdO is an n-type semiconductor with a bandgap of 2.18 eV (2.31 eV) at room temperature (298 K). DNA/RNA, CdO and DNA/RNA–CdO sandwiched complex was characterized by Attenuated Total Reflection–Fourier Transform–Infrared (ATR–FTIR) spectroscopy, Raman spectroscopy, X–Ray Diffraction (XRD) technique and Energy–Dispersive X–Ray (EDAX) spectroscopy. The modified anti–cancer-protective membrane was characterized by Scanning Electron Microscope (SEM), EDAX analysis, 3D–Atomic–Force Microscopy (3D–AFM), Transmission Electron Microscopy (TEM) and contact angle analyses and methods. The current study is aimed to use Polysorbate 80 as a surfactant for investigating the effectiveness of permeate TBA on the Polyether Ether Ketone (PEEK) anti–cancer-protective membrane and the effect of loading DNA/RNA–CdO sandwiched complex on hydrophilicity and anti-cancer properties. The results showed decreasing surface pore size from 227 to 176 and increasing porosity from 101 to 111 with loading DNA/RNA–CdO sandwiched complex, and the permeate of anti–cancer-protective membrane increased from 80 to 220 (L/m2. hr. bar) with loading DNA/RNA–CdO sandwiched complex.
Downloads
References
Couvreur P, Louvard D. COVID-19 and drugs: pathophysiology and therapeutic approaches. C R Biol. 2021;344(1):27-42. doi: 10.5802/crbiol.38, PMID 34213847.
White M, Kingma P, Tecle T, Kacak N, Linders B, Heuser J, Crouch E, Hartshorn K. Multimerization of surfactant protein D, but not its collagen domain, is required for antiviral and opsonic activities related to influenza virus. J Immunol. 2008;181(11):7936-43. doi: 10.4049/jimmunol.181.11.7936, PMID 19017984.
Vanitha V, Vijayakumar S, Nilavukkarasi M, Punitha VN, Vidhya E, Praseetha PK. Heneicosane- A novel microbicidal bioactive alkane identified from plumbago zeylanica L. Ind Crops Prod. 2020;154. doi: 10.1016/j.indcrop.2020.112748. PMID 112748.
Turro NJ, Lei XG, Ananthapadmanabhan KP, Aronson M. Spectroscopic probe analysis of protein-surfactant interactions: the BSA/SDSsystem. Langmuir. 1995;11(7):2525-33. doi: 10.1021/la00007a035.
Otzen DE. Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophys J. 2002;83(4):2219-30. doi: 10.1016/S0006-3495(02)73982-9, PMID 12324439.
Israelachvili JN. Contrasts between intermolecular, interparticle, and intersurface forces, book chapter. Intermol Surf Forces. 2011:205-22.
Itoo FA, MirInt JM, Skoglund S, Blomberg E, Wallinder IO, Grillo I, Pedersen JS, Bergström LM. A novel explanation for the enhanced colloidal stability of silver nanoparticles in the presence of an oppositely charged surfactant. Phys Chem Chem Phys. 2017;19(41):28037-43. doi: 10.1039/c7cp04662f, PMID 28994441.
Wong FWF, Ariff AB, Stuckey DC. Downstream protein separation by surfactant precipitation: a review. Crit Rev Biotechnol. 2018;38(1):31-46. doi: 10.1080/07388551.2017.1312266, PMID 28427287.
Itoo FA, Mir JM, Malik NA, Ali A. Density functional aspects and thermodynamic evaluation of sodium dodecyl sulphate in aqueous tartrazine. J King Saud Univ Sci. 2020;32(4):2505-12. doi: 10.1016/j.jksus.2020.04.009.
Mir JM, Itoo FA. Experimental-DFT interface of hydrogen bonding description of 1:10 methanol-water solution. J Mol Liq. 2017;247:1-5. doi: 10.1016/j.molliq.2017.09.094. molliq.2017.09.094.
GM P, Maanvizhi S. Fast track usa regulatory approval for drugs to treat emerging infectious diseases: fast track approval. Asian J Pharm Clin Res. 2021;14:1-4.
Mahmood Alabdali AY, Chinnappan S, Abd Razik BM, RM, Khalivulla SI HR, Samein LH. Impact of covid-19 on multiple body organ failure: a review. Int J App Pharm. 2021;13(5):54-9. doi: 10.22159/ijap.2021v13i5.42653.
Sundararajan. Insights into corona/coronavirus disease 2019 pandemic–opinion versus evidence. Asian J Pharm Clin Res. 2021;14:13-5.
Mir JM, Maurya RC. Nitric oxide as a therapeutic option for COVID-19 treatment: a concise perspective. New J Chem. 2021;45(4):1774-84. doi: 10.1039/D0NJ03823G.
https://www.nationalgeographicNationalgeographic.com/science/2020/04/factors-allow-viruses-infect-humans-coronavirus. [Last accessed on 10 May 2021].
Koonin EV, Senkevich TG, Dolja VV. The ancient virus world and evolution of cells. Biol Direct. 2006;1:29. doi: 10.1186/1745-6150-1-29, PMID 16984643.
McIntosh K, Halonen P, Ruuskanen O. Report of a workshop on respiratory viral infections: epidemiology, diagnosis, treatment, and prevention. Clin Infect Dis. 1993;16(1):151-64. doi: 10.1093/clinids/16.1.151, PMID 8383547.
Ada GL, Jones PD. The immune response to influenza infection. Curr Top Microbiol Immunol. 1986;128:1-54. doi: 10.1007/978-3-642-71272-2_1, PMID 3533447.
Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:365-94. doi: 10.1146/annurev.bi.56.070187.002053. PMID 3304138.
Sturman LS, Ricard CS, Holmes KV. Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion. J Virol. 1990;64(6):3042-50. doi: 10.1128/JVI.64.6.3042-3050.1990, PMID 2159562.
Chepurnov AA, Bakulina LF, Dadaeva AA, Ustinova EN, Chepurnova TS, Baker JR. Inactivation of Ebola virus with a surfactant nanoemulsion. Acta Trop. 2003;87(3):315-20. doi: 10.1016/S0001-706X(03)00120-7, PMID 12875924.
Hiemstra PS. Epithelial antimicrobial peptides and proteins: their role in host defense and inflammation. Paediatr Respir Rev. 2001;2(4):306-10. doi: 10.1053/prrv.2001.0165, PMID 12052302.
Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020;25(5):2020. doi: 10.2807/1560-7917.ES.2020.25.5.2000062, PMID 32046819.
Bitko V, Musiyenko A, Barik S. Viral infection of the lungs through the eye. J Virol. 2007;81(2):783-90. doi: 10.1128/JVI.01437-06, PMID 17050596.
Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, Zimmer T, Thiel V, Janke C, Guggemos W, Seilmaier M, Drosten C, Vollmar P, Zwirglmaier K, Zange S, Wolfel R, Hoelscher M. Transmission of 2019-nCoV infection from an asymptomatic contact in germany. N Engl J Med. 2020;382(10):970-1. doi: 10.1056/NEJMc2001468, PMID 32003551.
Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q, Song T, He J, Yen HL, Peiris M, Wu J. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177-9. doi: 10.1056/NEJMc2001737, PMID 32074444.
Fukushi M, Yamashita M, Miyoshi-Akiyama T, Kubo S, Yamamoto K, Kudo K. Laninamiviroctanoate and artificial surfactant combination therapy significantly increases survival of mice infected with the lethal influenza H1N1 virus. PLOS ONE. 2012;7(8):e42419. doi: 10.1371/journal.pone.0042419. PMID 22879974.
Hsieh IN, De Luna X, White MR, Hartshorn KL. The role and molecular mechanism of action of surfactant protein D in innate host defense against influenza A virus. Front Immunol. 2018;9:1368. doi: 10.3389/fimmu.2018.01368, PMID 29951070.
Guttentag S, Foster CD. Update in surfactant therapy. NeoReviews. 2011;12(11):e625-34. doi: 10.1542/neo.12-11-e625.
Jeon GW. Surfactant preparations for preterm infants with respiratory distress syndrome: past, present, and future. Korean J Pediatr. 2019;62(5):155-61. doi: 10.3345/kjp.2018.07185, PMID 30744318.
Walther FJ, Gordon LM, Waring AJ. Advances in synthetic lung surfactant protein technology. Expert Rev Respir Med. 2019;13(6):499-501. doi: 10.1080/17476348.2019.1589372, PMID 30817233.
Bocking T, Johnson L, Singh A, Desai A, Aulakh GK, Singh B. Research article expression of surfactant protein-A and D, and CD9 in lungs of 1 and 30 day old foals. BMC Vet Res. 2021;17(1):236. doi: 10.1186/s12917-021-02943-5, PMID 34225699.
Hammad MA, Muller BW. Increasing drug solubility by means of bile salt–phosphatidylcholine-based mixed micelles. Eur J Pharm Biopharm. 1998;46(3):361-7. doi: 10.1016/s0939-6411(98)00037-x, PMID 9885310.
Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81-98. doi: 10.1016/j.ajps.2014.09.004.
van Hoogevest P, Wendel A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol. 2014;116(9):1088-107. doi: 10.1002/ejlt.201400219, PMID 25400504.
Yang C, Wu T, Qi Y, Zhang Z. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics. 2018;8(2):464-85. doi: 10.7150/thno.22711, PMID 29290821.
Bhusari KP, Khedekar PB, Umathe SN, Bahekar RH, Raghu Ram Rao A. Synthesis of 8‐bromo‐9‐substituted‐1,3‐benzothiazolo‐[5,1‐b]‐1. 3, 4‐triazoles and their nthelmintic activity, Indian J. Hetero Chem. 2000;9:275-8.
Bhusare SR, Pawar RP, Vibhute YB. Synthesis and antibacterial activity of some new 2‐(substituted phenyl sulfonamido)‐6‐substitutedbenzothiazoles. Indian J Heterocycl Chem. 2001;11:78-80.
Chandra Shekar B, Roy K, De AU. Synthesis of some new p‐toluene sulfonamido glutaramides. Indian J Heterocycl Chem. 2001;10:237-8.
Ahmed B, Khan SA, Alam T. Synthesis and antihepatotoxic activity of some heterocyclic compounds containing the 1,4‐dioxane ring system. Pharmazie. 2003;58(3):173-6. PMID 12685811.
Undheim K, Benneche T. In: Katritzky AR, Rees CW, Scriven EFV, McKillop A, editors. ComprehensiveHeterocyclicChemistryII. Vol. 6. Oxford: Pergamon Press; 1996. p. 93-231. doi: 10.1038/ja.2005.107, PMID 16506697.
Ramanatham VK, Gopal KR, Kotha VSR, Kumar Seshu. Facile synthesis and antimicrobial properties of 2‐(substituted‐benzylsulfanyl)‐1h‐benz‐imidazoles. J Heterocycl Chem. 2009;42:1402-8.
Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev. 1991;6(2):181-202. doi: 10.1016/0169-409X(91)90040-J.
Engler TA, Lynch KO, Chai W, Meduna SP. Cycloaddition reactions of 1,4-benzoquinone mono- and bisimides with styrenyl systems: new syntheses of nitrogen substituted azapterocarpans, pterocarpans, 2-aryl-2,3-dihydroindoles and -dihydrobenzofurans. Tetrahedron Lett. 1995;36(16):2713-6. doi: 10.1016/0040-4039(95)00375-M.
Engler TA, LaTessa KO, Iyengar R, Chai WY, Agrios K. Stereoselective syntheses of substituted pterocarpans with anti-HIV activity, and 5-aza-/5-thia-pterocarpan and 2-aryl-2,3-dihydrobenzofuran analogues. Bioorg Med Chem. 1996;4(10):1755-69. doi: 10.1016/0968-0896(96)00192-7, PMID 8931946.
Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. Mol Biol. 1961;3:208-18.
Müller WEG, Rohde HJ, Steffen R, Maidhof A, Zahn RK. Potentiation of the effectiveness of bleomycin by A•T‐specific DNA ligands in vitro as well as in vivo. Cancer Letters. 1975;1:127-32. doi: 10.1016/S0304-3835(75)95965-0.
Cohen G, Eisenberg H. Viscosity and sedimentation study of sonicated DNA‐proflavine complexes. Biopolymers. 1969;8(1):45-55. doi: 10.1002/bip.1969.360080105.
Satyanarayana S, Dabrowiak JC, Chaires JB. Neither delta- nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry. 1992;31(39):9319-24. doi: 10.1021/bi00154a001, PMID 1390718.
Kratz F, Nuber B, Weiß J, Keppler BK. Synthesis and characterization of potential antitumor and antiviral gallium(III) complexes of α-(N)-heterocyclic thiosemicarbazones. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry. 1991;21(10):1601-15. doi: 10.1080/15533179108020631.
Biradar NS, Kulkarni VH. A spectroscopic study of tin(IV) complexes with multidentate schiff bases. Journal of Inorganic and Nuclear Chemistry. 1971;33(11):3781-6. doi: 10.1016/0022-1902(71)80285-3.
Barry AL, Hoeprich PD, Saubolle MA. The antimicrobic susceptibility test: principles and practices. 4th ed. LBS, Lea and Febiger. Philadelphia; 1976. p. 180-93.
Thorn GW, Adams RD, Braunwald E, Isselbacher KJ, Petersdorf RG. Harrison’s Principles of Internal Medicine. New York: McGraw-Hill Co; 1977.
Satyanarayana S, Dabrowiak JC, Chaires JB. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry. 1993;32(10):2573-84. doi: 10.1021/bi00061a015, PMID 8448115.
Moreno RG, Alipázaga MV, Gomes OF, Linares E, Medeiros MHG, Coichev N. DNA damage and 2′‐deoxyguanosine oxidation induced by S(IV) autoxidation catalyzed by copper(II) tetraglycine complexes: synergistic effect of a second metal ion. J Inorg Biochem. 2007;101(5):866-75. doi: 10.1016/j.jinorgbio.2007.02.003, PMID 17383005.
Ghosh S, Barve AC, Kumbhar AA, Kumbhar AS, Puranik VG, Datar PA, Sonawane UB, Joshi RR. Synthesis, characterization, X‐ray structure and DNA photocleavage by cis‐dichloro bis(diimine) Co(III) complexes. J Inorg Biochem. 2006;100(3):331-43. doi: 10.1016/j.jinorgbio.2005.11.022, PMID 16412513.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Alireza Heidari

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.