GC-MS PROFILE, SYNTHESIS AND SPECTRAL CHARACTERIZATION OF FLAVONOID-METAL (CADMIUM, COBALT, COPPER, NICKEL) COMPLEXES OF JATROPHA CURCUS LEAVES

Authors

  • EDEWOR THERESA IBIBIA Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria https://orcid.org/0000-0002-1362-3763
  • BANKOLE T. A. Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
  • OGUNJIMI D. V. Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
  • MMUO A. I. Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
  • AMUDA M. O. Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

DOI:

https://doi.org/10.22159/ijcr.2023v7i2.217

Keywords:

GC-MS, Synthesis, FTIR, UV/VIS, Flavonoids, Metals, Complexes, Jatropha curcus, Leaves

Abstract

Objective: The main aim of this research is to determine the optimum conditions required for the synthesis of metal-flavonoid complexes from leaves of Jatropha curcus.

Methods: Soxhlet extractor was used for the extraction. Phytochemical screening was carried out using the method described by Harborne. The phytochemical profile of the extract was determined using GC-MS. The flavonoid-metal complexes were synthesized using different transition metal salts and the methanolic plant leaves extract. The synthesis was carried out by varying the pH, metal ion and extract concentrations. The solubility of the flavonoid-metal complexes in different solvents was determined. The synthesized complexes were subjected to UV-visible and FTIR analysis.

Results: Methanol extract gave a yield of 4. 88%. Phytochemical screening revealed the presence of Flavonoids, steroids and alkaloids. The GC-MS analysis showed the presence of 14 compounds. Maximum dry weights of complexes formed between 600-700 mg were obtained at a concentration of 1000 ppm crude extract and for the metal ion concentrations, the optimum concentration observed for Cd2+and Cu2+complexes was 120 ppm while that of Ni2+and Co2+complexes was 140 ppm. Most suitable pH for copper-flavonoid was 8, for cobalt-and cadmium-flavonoid complexes was 9 and pH of 10 for nickel-flavonoid complexes. The FTIR results showed the formation of the complex due to the shift observed in the band assigned to C=O The UV/visible spectrum showed absorbance in the wavelength range of 250-480 nm.

Conclusion: Flavonoid-metal complexes were synthesized and their optimum conditions determine.

Downloads

Download data is not yet available.

References

Lutoshkin MA, Kuznetsov BN, Levdanskiy VA. The interaction of morin and morin-5’-sulfonic acid with lead(II): study of the 1:1 complex formation process in aqueous solution. Main Group Met Chem. 2019;42(1):67-72. doi: 10.1515/mgmc-2019-0007.

Samsonowicz M, Regulska E, Kalinowska M. Hydroxyflavone metal complexes – molecular structure, antioxidant activity and biological effects. Chem Biol Interact. 2017;273:245-56. doi: 10.1016/j.cbi.2017.06.016, PMID 28625490.

Afanaseva IB, Ostrakhovitch EA, Mikhal’chik EV, Ibragimova GA, Korkina LG. Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochem Pharmacol. 2001;61(6):677-84. doi: 10.1016/s0006-2952(01)00526-3, PMID 11266652.

Chen YM, Wang MK, Huang PM Catechin transformation as influenced by aluminum. J Agric Food Chem. 2006;54(1):212-8. doi: 10.1021/jf051926z. PMID 16390201.

Grazul M, Budzisz E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord Chem Rev. 2009;253(21-22):2588-98. doi: 10.1016/j.ccr.2009.06.015.

Huang YL, Yeh PY, Shen CC, Chen CC. Antioxidant flavonoids from the rhizomes of Helminthostachys zeylanica. Phytochemistry. 2003;64(7):1277-83. doi: 10.1016/j.phytochem.2003.09.009, PMID 14599526.

Jung HA, Jung MJ, Kim JY, Chung HY, Choi JS. Inhibitory activity of flavonoids from Prunus davidiana and other flavonoids on total ROS and hydroxyl radical generation. Arch Pharm Res. 2003;26(10):809-15. doi: 10.1007/BF02980025, PMID 14609128.

Marfak A, Trouillas P, Allais DP, Calliste CA, Cook Moreau J, Duroux JL. Reactivity of flavonoids with 1-hydroxyethyl radical: a gamma-radiolysis study. Biochim Biophys Acta. 2004;1670(1):28-39. doi: 10.1016/j.bbagen.2003.10.010, PMID 14729139.

Al-Obaidi OH. Synthesis, spectral characterization, theoretical evaluation of new Cu(II) and Ni(II) complexes of flavone. Int J Pharm Chem. 2016;2(2):15-9. doi: 10.11648/j.ijpc.20160202.12.

Chen X, Tang LJ, Sun YN, Qiu PH, Liang G. Syntheses, characterization and antitumor activities of transition metal complexes with isoflavone. J Inorg Biochem. 2010;104(4):379-84. doi: 10.1016/j.jinorgbio.2009.11.008. PMID 20015553.

Andrades Ikeda NE, Novak EM, Maria DA, Velosa AS, Pereira RM. Synthesis, characterization and biological evaluation of rutin‐zinc (II) flavonoid‐metal complex. Chem Biol Interact. 2015;239:184-91. doi: 10.1016/j.cbi.2015.06.011.

Kasprzak MM, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015;5(57):45853-77. doi: 10.1039/C5RA05069C.

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi: 10.1017/jns.2016.41, PMID 28620474.

Pereira RMS, Andrades NED, Paulino N, Sawaya ACHF, Eberlin MN, Marcucci MC. Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, anti-inflammatory and tumor cell cytotoxicity. Molecules. 2007;12(7):1352-66. doi: 10.3390/12071352, PMID 17909491.

Jun T, Bochu W, Liancai Z. Hydrolytic cleavage of DNA by quercetin zinc(II) complex. Bioorg Med Chem Lett. 2007;17(5):1197-9. doi: 10.1016/j.bmcl.2006.12.023, PMID 17189687.

Inoue MB, Inoue M, Fernando Q, Valcic S, Timmermann BN. Potentiometric and 1H NMR studies of complexation of Al(3+) with (-)-epigallocatechin gallate, a major active constituent of green tea. J Inorg Biochem. 2002;88(1):7-13. doi: 10.1016/s0162-0134(01)00323-3, PMID 11750019.

Cornard JP, Merlin JC. Comparison of the chelating power of hydroxy flavones. J Mol Struct. 2003;651-653:381-7. doi: 10.1016/S0022-2860(02)00655-5.

Teixeira S, Siquet C, Alves C, Boal I, Marques MP, Borges F. Structure-property studies on the antioxidant activity of flavonoids present in diet. Free Radic Biol Med. 2005;39(8):1099-108. doi: 10.1016/j.freeradbiomed.2005.05.028, PMID 16198236.

Engelmann MD, Hutcheson R, Cheng IF. Stability of ferric complexes with 3-hydroxyflavone (flavonol), 5,7-dihydroxyflavone (chrysin), and 3’,4’-dihydroxyflavone. J Agric Food Chem. 2005;53(8):2953-60. doi: 10.1021/jf048298q, PMID 15826045.

Lian H, Kang Y, Bi S, Arkin Y, Shao D, Li D. Direct determination of trace aluminum with quercetin by reversed-phase high-performance liquid chromatography. Talanta. 2004;62(1):43-50. doi: 10.1016/S0039-9140(03)00405-3, PMID 18969261.

Chen YM, Wang MK, Huang PM. Catechin transformation as influenced by aluminum. J Agric Food Chem. 2006;54(1):212-18. doi: 10.1021/jf051926z, PMID 16390201.

Esparza I, Salinas I, Santamaria C, Garcia Mina JM, Fernández JM. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal Chim Acta. 2005;543(1-2):267-74. doi: 10.1016/j.aca.2005.04.029.

Dominguez S, Torres J, Morales P, Heinzen H, Bertucci A, Kremer C. Complexation and antioxidant activity of flavonoids with biologically relevant metal ions. In: Cartere TW, Verley KS, editors. Coordination chemistry research progress. Nova Science Publishers, Inc ISBN 978-1-60456-047-3; 2008. p. 305-28.

Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry. 2000;55(6):481-504. doi: 10.1016/S0031-9422(00)00235-1.

Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM. Flavonoid–metal ion complexes: a novel class of therapeutic agents. Med Res Rev. 2014;34(4):677-702. doi: 10.1002/med.21301, PMID 24037904.

Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000;63(7):1035-42. doi: 10.1021/np9904509, PMID 10924197.

Mira L, Fernandez MT, Santos M, Rocha R, Florencio MH, Jennings KR. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic Res. 2002;36(11):1199-208. doi: 10.1080/1071576021000016463, PMID 12592672.

Viswanathan P, Sriram V, Yogeeswaran G. Sensitive spectrophotometric assay for 3-hydroxy-substituted flavonoids, based on their binding with molybdenum, antimony, or bismuth. J Agric Food Chem. 2000;48(7):2802-6. doi: 10.1021/jf990357q, PMID 10898625.

Symonowicz M, Kolanek M. Flavonoids and their properties to form chelate complexes. Biotechnol Food Sci. 2012;76(1):35-41.

Cornard JP, Merlin JC. Structural and spectroscopic investigation of 5-hydroxyflavone and its complex with aluminium. J Mol Struct. 2001;569(1-3):129-38. doi: 10.1016/S0022-2860(01)00433-1.

Ren J, Meng S, Lekka ChE, Kaxiras E. Complexation of flavonoids with iron: structure and optical signatures. J Phys Chem B. 2008;112(6):1845-50. doi: 10.1021/jp076881e, PMID 18211058.

Zhou J, Wang LFF, Wang JYY, Tang N. Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth(III) complexes. J Inorg Biochem. 2001;83(1):41-8. doi: 10.1016/s0162-0134(00)00128-8, PMID 11192698.

Tan J, Wang B, Zhu L. DNA binding and oxidative DNA damage induced by a quercetin copper(II) complex: potential mechanism of its antitumor properties. J Biol Inorg Chem. 2009;14(5):727-39. doi: 10.1007/s00775-009-0486-8. PMID 19259707.

Khater M, Ravishankar D, Greco F, Osborn HM. Metal complexes of flavonoids: their synthesis, characterization and enhanced antioxidant and anticancer activities. Future Med Chem. 2019;11(21):2845-67. doi: 10.4155/fmc-2019-0237, PMID 31722558.

Published

01-04-2023

How to Cite

IBIBIA, E. T., B. T. A., O. D. V., M. A. I., and A. M. O. “GC-MS PROFILE, SYNTHESIS AND SPECTRAL CHARACTERIZATION OF FLAVONOID-METAL (CADMIUM, COBALT, COPPER, NICKEL) COMPLEXES OF JATROPHA CURCUS LEAVES”. International Journal of Chemistry Research, vol. 7, no. 2, Apr. 2023, pp. 4-12, doi:10.22159/ijcr.2023v7i2.217.

Issue

Section

Research Article
Share |

Most read articles by the same author(s)