GREEN AND SUSTAINABLE APPROACHES TO THE DESIGN OF MANUFACTURE OF MEDICINAL AGENTS
DOI:
https://doi.org/10.22159/ijcr.2026v10i1.314Keywords:
Sustainable chemistry, Eco-friendly drug discovery, Medicinal agent synthesis, Environmentally benign approaches in pharmaceuticalsAbstract
The Pharmaceutical Framework for Europe considers the environmental repercussions at every stage in the life span of therapeutic agents, from molecular conception and industrial fabrication through clinical utilization to waste management. During the last decade, the discipline of green and sustainable chemistry has significantly reshaped drug sciences by advancing ecological responsibility and minimizing ecological hazards. This article surveys the contemporary innovations in environmentally benign strategies utilized in medicinal design and chemical production, encompassing fundamental concepts, pioneering tools, and progressive methodologies. Drawing upon the examination of over 80 academic publications, it illustrates the practical incorporation of sustainable chemistry codes into pharmaceutical pipelines, highlighting verified successes and the ecological gains obtained. Consequently, this review emphasizes the constructive transformations driven by eco-conscious chemistry in drug manufacture and stresses the necessity for further exploration into the creation and large-scale preparation of more environmentally sound entities, in addition to advancing measures for contamination control and remediation.
Downloads
References
1. Qudus O, Abdulrahman A. Green chemistry in medicinal chemistry: a review on sustainable approaches to the synthesis of biologically active compounds. World J Adv Res Rev. 2024;24(2):1371-82. doi: 10.30574/wjarr.2024.24.2.3417.
2. Castiello C, Junghanns P, Mergel A, Jacob C, Ducho C, Valente S, Rotili D, Fioravanti R, Zwergel C, Mai A. GreenMedChem: the challenge in the next decade toward eco‑friendly compounds and processes in drug design. Green Chem. 2023;25(1):25–41. doi: 10.1039/D2GC03772F.
3. Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green chemistry in the synthesis of pharmaceuticals. Chem Rev. 2022;122(3):3637-710. doi: 10.1021/acs.chemrev.1c00631, PMID 34910451.
4. Shehab WS, Amer MM, Elsayed DA, Yadav KK, Abdellattif MH. Current progress toward synthetic routes and medicinal significance of quinoline. Med Chem Res. 2023;32(12):2443-57. doi: 10.1007/s00044-023-03121-y.
5. Majhi S. Recent advances in nanocatalyzed one-pot sustainable synthesis of bioactive N, N-heterocycles with anticancer activities: an outlook of medicinal chemistry. Curr Top Med Chem. 2025;25(1):63-95. doi: 10.2174/0115680266311149240822111827, PMID 39225202.
6. Khan I, Zaib S. Designing next-generation drug-like molecules for medicinal applications. Molecules. 2023;28(4):1860. doi: 10.3390/molecules28041860, PMID 36838848.
7. Medicinal chemistry for sustainable development. Focus on eco-friendly raw materials, minimizing environmental impact in pharmaceutical chemistry. Bentham Sci. 2022-2023.
8. Elsheikh SG, Hassan AM, Fayez YM, El Mosallamy SS. Green analytical chemistry and experimental design: a combined approach for the analysis of zonisamide. BMC Chem. 2023;17(1):38. doi: 10.1186/s13065-023-00942-1, PMID 37069703.
9. Kumar R, Maurya A. Green chemistry techniques for sustainable pharmaceutical synthesis. JDDHS. 2024;1(4):187-200. doi: 10.21590/jddhs.01.04.02.
10. Corona SP, Generali D. Abemaciclib: a CDK4/6 inhibitor for the treatment of HR+/HER2-advanced breast cancer. Drug Des Devel Ther. 2018;12:321-30. doi: 10.2147/DDDT.S137783, PMID 29497278.
11. Raymond MJ, Slater CS, Savelski MJ. LCA approach to the analysis of solvent waste issues in the pharmaceutical industry. Green Chem. 2010;12(10):1826-34. doi: 10.1039/c003666h.
12. Visht S. Sublimation-based cutting-edge technology (Sustainable Development Goals 9 and 15) to develop curcumin nanoparticles by solvent-free green chemistry method for their antioxidant and anticancer activity. Int J App Pharm. 2024;16(6):244-56. doi: 10.22159/ijap.2024v16i6.51268.
13. Bekker CL, Van Den Bemt BJ, Egberts AC, Bouvy ML, Gardarsdottir H. Patient and medication factors associated with preventable medication waste and possibilities for redispensing. Int J Clin Pharm. 2018;40(3):704-11. doi: 10.1007/s11096-018-0642-8, PMID 29721736.
14. Patel KR, Sen DJ, Jatakiya VP. Atom economy in drug synthesis is a playground of functional groups. Am J Adv Drug Deliv. 2013;1(2):73-83.
15. Ha MW, Paek SM. Recent advances in the synthesis of ibuprofen and naproxen. Molecules. 2021;26(16):4792. doi: 10.3390/molecules26164792, PMID 34443379.
16. Taib NA, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MK. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym Bull. 2023;80(2):1179-213. doi: 10.1007/s00289-022-04160-y.
17. Sonavane S, Pagire R, Patil D, Pujari U, Nikam R, Pradhan N. Improved solvent-free atom-efficient commercial process for the synthesis of diphenhydramine hydrochloride. Curr Green Chem. 2018;4(3):161-5. doi: 10.2174/2213346105666171227152717.
18. Huang H, Kang JY. Mitsunobu reaction using basic amines as pronucleophiles. J Org Chem. 2017;82(13):6604-14. doi: 10.1021/acs.joc.7b00622, PMID 28558240.
19. Ravelo M, Gallardo ME, Ladero M, Garcia Ochoa F. Synthesis of ibuprofen monoglyceride using Novozym®435: biocatalyst activation and stabilization in multiphasic systems. Catalysts. 2022;12(12):1531. doi: 10.3390/catal12121531.
20. Park J, Evans C, Maier J, Hatzell M, France S, Sievers C. Renewables-based routes to paracetamol: a green chemistry analysis. ACS Sustainable Chem Eng. 2024;12(44):16271-82. doi: 10.1021/acssuschemeng.4c05353.
21. Sehl T, Hailes HC, Ward JM, Menyes U, Pohl M, Rother D. Efficient 2-step biocatalytic strategies for the synthesis of all nor(pseudo)ephedrine isomers. Green Chem. 2014;16(6):3341-8. doi: 10.1039/C4GC00100A.
22. Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science. 2010;329(5989):305-9. doi: 10.1126/science.1188934, PMID 20558668.
23. Babazadeh M, Sheidaei M, Abbaspour S, Edjlali L. Synthesis, characterization and in vitro evaluation of new ibuprofen polymeric prodrugs based on 2-hydroxypropyl methacrylate. Sci Pharm. 2013;81(1):281-96. doi: 10.3797/scipharm.1204-14, PMID 23641345.
24. Dalvi H, Langlet A, Colbert MJ, Cournoyer A, Guay JM, Abatzoglou N. In-line monitoring of ibuprofen during and after tablet compression using near-infrared spectroscopy. Talanta. 2019;195:87-96. doi: 10.1016/j.talanta.2018.11.034, PMID 30625630.
25. Golemac L, Kondza M. Synthesis of acetylsalicylic acid an environmentally friendly approach. Annals of Biomedical and Clinical Research. 2023;2(2):100-8. doi: 10.47960/2744-2470.2023.2.2.100.
26. Pawelczyk A, Sowa Kasprzak K, Olender D, Zaprutko L. Microwave (MW) ultrasound (US) and combined synergic MW–US strategies for rapid functionalization of pharmaceutical use phenols. Molecules. 2018;23(9):2360. doi: 10.3390/molecules23092360, PMID 30223575.
27. Lidstrom P, Tierney J, Wathey B, Westman J. Microwave-assisted organic synthesis a review. Tetrahedron. 2001;57(45):9225-83. doi: 10.1016/S0040-4020(01)00906-1.
28. Sweygers N, Alewaters N, Dewil R, Appels L. Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural. Sci Rep. 2018;8(1):7719. doi: 10.1038/s41598-018-26107-y, PMID 29769623.
29. Wojnarowicz J, Chudoba T, Lojkowski W. A review of microwave synthesis of zinc oxide nanomaterials: reactants process parameters and Morphoslogies. Nanomaterials (Basel). 2020;10(6):1086. doi: 10.3390/nano10061086, PMID 32486522.
30. Shanab K, Neudorfer C, Schirmer E, Spreitzer H. Green solvents in organic synthesis: an overview. Curr Org Chem. 2013;17(11):1179-87. doi: 10.2174/1385272811317110005.
31. Banik BK, Sahoo BM, Kumar BV, Panda KC, Jena J, Mahapatra MK. Green synthetic approach: an efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives. Molecules. 2021;26(4):1163. doi: 10.3390/molecules26041163, PMID 33671751.
32. Varma RS. Solvent-free accelerated organic syntheses using microwaves. Pure Appl Chem. 2001;73(1):193-8. doi: 10.1351/pac200173010193.
33. Kumar A, Kuang Y, Liang Z, Sun X. Microwave chemistry recent advancements and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater Today Nano. 2020;11:100076. doi: 10.1016/j.mtnano.2020.100076.
34. Nain S, Singh R, Ravichandran S. Importance of microwave heating in organic synthesis. Adv J Chem A. 2019;2(2):94-104. doi: 10.29088/SAMI/AJCA.2019.2.94104.
35. Gabano E, Ravera M. Microwave-assisted synthesis: can transition metal complexes take advantage of this “green” method? Molecules. 2022;27(13):4249. doi: 10.3390/molecules27134249, PMID 35807493.
36. Patil AB, Phole PM, Charde MS, Chakole RD, Mali NS. Microwave assisted organic synthesis: a green chemistry approach. Int J Nov Res Dev. 2023;8:C310-21.
37. Meera G, Rohit KR, Saranya S, Anilkumar G. Microwave assisted synthesis of five-membered nitrogen heterocycles. RSC Adv. 2020;10(59):36031-41. doi: 10.1039/D0RA05150K, PMID 35517065.
38. Ristic I, Nikolic L, Cakic S, Nikolic V, Tanasic J, Zvezdanovic J. Eco-friendly microwave synthesis of sodium alginate chitosan hydrogels for effective curcumin delivery and controlled release. Gels. 2024;10(10):637. doi: 10.3390/gels10100637, PMID 39451290.
39. Wang P, Zhao J, Zhao Q, Ma X, Du X, Hao X. Microwave-assisted synthesis of manganese oxide catalysts for total toluene oxidation. J Colloid Interface Sci. 2022;607(1):100-10. doi: 10.1016/j.jcis.2021.08.170, PMID 34496313.
40. Cai Z, Wang X, Zhang Z, Han Y, Luo J, Huang M. Large scale and fast synthesis of nano-hydroxyapatite powder by a microwave-hydrothermal method. RSC Adv. 2019;9(24):13623-30. doi: 10.1039/C9RA00091G, PMID 35519585.
41. Gonzalez Moragas L, Yu SM, Murillo Cremaes N, Laromaine A, Roig A. Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition. Chem Eng J. 2015;281:87-95. doi: 10.1016/j.cej.2015.06.066.
42. Zhang Y, Guan B, Zheng C, Zhou J, Su T, Guo J. Research on the resistance of catalysts for selective catalytic reduction: current progresses and future perspectives. J Clean Prod. 2024;434:139920. doi: 10.1016/j.jclepro.2023.139920.
43. Brown DG, Bostrom J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J Med Chem. 2015;59(10):4443-58. doi: 10.1021/acs.jmedchem.5b01409, PMID 26571338.
44. Watson MP, Weix DJ. The once and future catalysts: how the challenges of first-row transition-metal catalysis grew to become strengths. Acc Chem Res. 2024;57(17):2451-2. doi: 10.1021/acs.accounts.4c00496, PMID 39223985.
45. Crabtree RH. The organometallic chemistry of the transition metals. 6th ed. Hoboken, NJ: John Wiley & Sons; 2014.
46. Bullock RM, Helm ML. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Acc Chem Res. 2015;48(7):2017-26. doi: 10.1021/acs.accounts.5b00069, PMID 26079983.
47. Aghahosseini H, Saadati MR, Rezaei SJ, Ramazani A, Asadi N, Yahiro H. A robust polyfunctional Pd(II)-based magnetic amphiphilic nanocatalyst for the Suzuki–Miyaura coupling reaction. Sci Rep. 2021;11(1):10239. doi: 10.1038/s41598-021-89424-9, PMID 33986335.
48. Lin H, Gao X, Yao H, Luo Q, Xiang B, Liu C. Immobilization of a Pd(II)-containing N-heterocyclic carbene ligand on porous organic polymers: efficient and recyclable catalysts for Suzuki–Miyaura reactions. Catal Sci Technol. 2021;11(11):3676-80. doi: 10.1039/D1CY00021G.
49. Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R. High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. Nanomedicine. 2020;30:102297. doi: 10.1016/j.nano.2020.102297, PMID 32931927.
50. Tang W, Li J, Jin X, Sun J, Huang J, Li R. Magnetically recyclable Fe@Pd/C as a highly active catalyst for Suzuki coupling reaction in aqueous solution. Catal Commun. 2014;43:75-8. doi: 10.1016/j.catcom.2013.09.001.
51. Corona SP, Generali D. Abemaciclib: a CDK4/6 inhibitor for the treatment of HR+/HER2- advanced breast cancer. Drug Des Devel Ther. 2018;12:321-30. doi: 10.2147/DDDT.S137783, PMID 29497278.
52. Frederick MO, Kjell DP. A synthesis of abemaciclib utilizing a Leuckart–Wallach reaction. Tetrahedron Lett. 2015;56(7):949-51. doi: 10.1016/j.tetlet.2014.12.082.
53. Soliev SB, Astakhov AV, Pasyukov DV, Chernyshev VM. Nickel(ii) N-heterocyclic carbene complexes as efficient catalysts for the Suzuki-Miyaura reaction. Russ Chem Bull. 2020;69(4):683-90. doi: 10.1007/s11172-020-2818-3.
54. Tamizh MM, Karvembu R. Synthesis of triethylphosphite complexes of nickel(II) and palladium(II) with tridentate Schiff base ligand for catalytic application in carbon–carbon coupling reactions. Inorg Chem Commun. 2012;25:30-4. doi: 10.1016/j.inoche.2012.08.016.
55. Xiang J, Li P, Chong H, Feng L, Fu F, Wang Z. Bimetallic Pd–Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res. 2014;7(9):1337-43. doi: 10.1007/s12274-014-0498-8.
56. Lungu II, Cioanca O, Mircea C, Tuchilus C, Stefanache A, Huzum R. Insights into catechin–copper complex structure and biologic activity modulation. Molecules. 2024;29(20):4969. doi: 10.3390/molecules29204969, PMID 39459337.
57. Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM, Etessamifar F, Jaberizadeh AH. Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int J Nanomedicine. 2020;15:3983-99. doi: 10.2147/IJN.S255398, PMID 32606660.
58. Turan N, Buldurun K, Colak N, Ozdemir I. Preparation and spectroscopic studies of Fe(II), Ru(II), Pd(II) and Zn(II) complexes of Schiff base containing terephthalaldehyde and their transfer hydrogenation and Suzuki–Miyaura coupling reaction. Open Chem. 2019;17(1):571-80. doi: 10.1515/chem-2019-0074.
59. Reckling AM, Martin D, Dawe LN, Decken A, Kozak CM. Structure and C–C cross-coupling reactivity of iron(III) complexes of halogenated amine-bis(phenolate) ligands. J Organomet Chem. 2011;696(3):787-94. doi: 10.1016/j.jorganchem.2010.09.076.
60. Ramgren SD, Hie L, Ye Y, Garg NK. Nickel-catalyzed Suzuki–Miyaura couplings in green solvents. Org Lett. 2013;15(15):3950-3. doi: 10.1021/ol401727y, PMID 23879392.
61. Hosseyni S, Jarrahpour A. Recent advances in β-lactam synthesis. Org Biomol Chem. 2018;16(38):6840-52. doi: 10.1039/C8OB01833B, PMID 30209477.
62. Oddy MJ, Kusza DA, Epton RG, Lynam JM, Unsworth WP, Petersen WF. Visible-light-mediated energy transfer enables the synthesis of β-lactams via intramolecular hydrogen atom transfer. Angew Chem Int Ed Engl. 2022;61(48):e202213086. doi: 10.1002/anie.202213086, PMID 36205440.
63. Santos AS, Raydan D, Cunha JC, Viduedo N, Silva AM, Marques MM. Advances in green catalysis for the synthesis of medicinally relevant N-heterocycles. Catalysts. 2021;11(9):1108. doi: 10.3390/catal11091108.
64. Sheldon RA, Woodley JM. Role of biocatalysis in sustainable chemistry. Chem Rev. 2018;118(2):801-38. doi: 10.1021/acs.chemrev.7b00203, PMID 28876904.
65. Benitez Mateos AI, Paradisi F. Perspectives on flow biocatalysis: the engine propelling enzymatic reactions. J Flow Chem. 2023;14(1):211-8. doi: 10.1007/s41981-023-00283-z.
66. Pandeeti E, Sangeetha V, Deepika R. Emerging trends in the industrial production of chemical products by microorganisms. In: Microbial diversity in the genomic era. Cambridge, MA: Academic Press; 2019. p. 455-70.
67. Sharma S, Das J, Braje WM, Dash AK, Handa S. A glimpse into green chemistry practices in the pharmaceutical industry. ChemSusChem. 2020;13(11):2859-75. doi: 10.1002/cssc.202000317, PMID 32212245.
68. Chapman J, Ismail AE, Dinu CZ. Industrial applications of enzymes: recent advances, techniques and outlooks. Catalysts. 2018;8(6):238. doi: 10.3390/catal8060238.
69. Ciriminna R, Pagliaro M. Green chemistry in the fine chemicals and pharmaceutical industries. Org Process Res Dev. 2013;17(12):1479-84. doi: 10.1021/op400258a.
70. Williams Herman D, Round E, Swern AS, Musser B, Davies MJ, Stein PP. Safety and tolerability of sitagliptin in patients with type 2 diabetes: a pooled analysis. BMC Endocr Disord. 2008;8:14. doi: 10.1186/1472-6823-8-14, PMID 18954434.
71. Kendall DM, Cuddihy RM, Bergenstal RM. Clinical application of incretin-based therapy: therapeutic potential patient selection and clinical use. Am J Med. 2009;122(6 Suppl):S37-50. doi: 10.1016/j.amjmed.2009.03.015, PMID 19464427.
72. Desai AA. Sitagliptin manufacture: a compelling tale of green chemistry process intensification and industrial asymmetric catalysis. Angew Chem Int Ed Engl. 2011;50(9):1974-6. doi: 10.1002/anie.201007051, PMID 21284073.
73. Kjellin M, Wesslen T, Lofblad E, Lennerstrand J, Lannergard A. The effect of the first-generation HCV-protease inhibitors Boceprevir and telaprevir and the relation to baseline NS3 resistance mutations in genotype 1: experience from a small Swedish cohort. Ups J Med Sci. 2018;123(1):50-6. doi: 10.1080/03009734.2018.1441928, PMID 29536805.
74. Li T, Liang J, Ambrogelly A, Brennan T, Gloor G, Huisman G. Efficient chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization. J Am Chem Soc. 2012;134(14):6467-72. doi: 10.1021/ja3010495, PMID 22409428.
75. Xie X, Tang Y. Efficient synthesis of simvastatin by use of whole-cell biocatalysis. Appl Environ Microbiol. 2007;73(7):2054-60. doi: 10.1128/AEM.02820-06, PMID 17277201.
76. Veleva V, Cue B. Benchmarking green chemistry adoption by “big pharma” and generics manufacturers. BIJ. 2017;24(5):1414-36. doi: 10.1108/BIJ-01-2016-0003.
77. Mishra M, Sharma M, Dubey R, Kumari P, Ranjan V, Pandey J. Green synthesis interventions of pharmaceutical industries for sustainable development. Curr Res Green Sustain Chem. 2021;4:100174. doi: 10.1016/j.crgsc.2021.100174.
78. Han C, Savage S, Al Sayah M, Yajima H, Remarchuk T, Reents R. Asymmetric synthesis of Akt kinase inhibitor ipatasertib. Org Lett. 2017;19(18):4806-9. doi: 10.1021/acs.orglett.7b02228, PMID 28858516.
79. France SP, Lewis RD, Martinez CA. The evolving nature of biocatalysis in pharmaceutical research and development. JACS Au. 2023;3(4):715-35.
80. Meyer HP, Eichhorn EJ, Hanlon SP, Lutz S, Schurmann M, Wohlgemuth R. The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC). Catal Sci Technol. 2013;3(1):29-40. doi: 10.1039/C2CY20350B.
Published
How to Cite
Issue
Section
Copyright (c) 2026 AHMED SAMY, NOHA ABDO, DALIA GABER, EMAN AL JOHANI

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



