LIGNOCELLULOSE BIOCONVERSION BY GUT MICROBIOTA OF SATURNIIDAE SPECIES: A SUSTAINABLE PATH TO BIOFUEL PRODUCTION

Authors

  • SHESHU MUNIVENKATAPPA Department of Life Science, Bangalore University, Bangalore-560056, India
  • MALLIAH SHIVASHANKAR Department of Life Science, Bangalore University, Bangalore-560056, India

DOI:

https://doi.org/10.22159/ijcr.2025v9i4.306

Keywords:

Lignocellulosic biomass, Saturniidae gut microbiota, Samia cynthia ricini, Cellulolytic enzymes, Second-generation biofuels, Microbial bioconversion, Metagenomics, Synthetic biology

Abstract

A promising and sustainable resource for the synthesis of biofuels is lignocellulosic biomass, which is mainly made up of cellulose, hemicellulose, and lignin. The potential of lignocellulose, a plentiful and renewable substrate, to produce second-generation biofuels that do not compete with food crops has attracted much attention. However, because lignocellulose is complex and resistant, its effective conversion into fermentable sugars remains a significant bottleneck. Biological approaches that mimic natural degradation processes are being investigated to solve this problem. One interesting example is the gut microbiota of insects in the Saturniidae family, like the eri silkworm (Samia cynthia ricini). These insects have co-evolved with specific gut bacteria that use enzymatic activity to break down plant polymers, allowing for adequate nutrient absorption from the lignocellulosic diet.

Cellulases, hemicellulases, and ligninases play a key role in the microbial breakdown of lignocellulosic biomass, which is examined in this review, along with its structural makeup and biochemical processes. We examine the enzymatic profiles and metabolic pathways of the gut microbiota in different Saturniidae species, as well as their composition, diversity, and function. The potential for using these naturally occurring microbial systems to produce industrial biofuel is highlighted. We also emphasise how metagenomics, enzyme screening, and synthetic biology can be combined to improve the efficiency of lignocellulose conversion. The biotechnological potential of Saturniidae gut microbes as a sustainable solution for lignocellulose bioconversion and advanced biofuel production is highlighted in this review by combining research from microbial ecology, insect physiology, and bioprocess engineering.

Downloads

Download data is not yet available.

References

1. Chukwuma OB, Obieze CC, Nwaiwu O, Okolo BN. Progress and perspectives of microbial degradation of lignocellulosic biomass for biofuel production. Renew Sustain Energy Rev. 2021;138:110566.

2. Statista. Global CO₂ emissions from fossil fuels from 1940 to 2024 (in billion metric tons); 2024. Available from: https://www.statista.communstat/264699/worldwide-co2emissions.

3. The Guardian. Global primary energy consumption by source (1950-2024). The Guardian; 2023. Available from: https://www.theguardian.com/environment/article/2024/jun/20/fossil fuel use reaches global record despite clean energy growth.

4. Manikandan S, Vickram S, Sirohi R, Subbaiya R, Krishnan RY, Karmegam N. Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. Bioresour Technol. 2023 Mar;372:128679. doi: 10.1016/j.biortech.2023.128679, PMID 36706818.

5. Aidan Farrow, Greenpeace, Kathryn A, Miller, Greenpeace, Lauri Myllyvirta. Toxic air: the price of fossil fuels. Greenpeace; 2020. Available from: https://www.greenpeace.to/greenpeace/?p=3215.

6. Demirbas A. Political economic and environmental impacts of biofuels: a review. Appl Energy. 2009 Nov 1;86:S108-17. doi: 10.1016/j.apenergy.2009.04.036.

7. Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Prog Energy Combust Sci. 2011;37(1):52-68. doi: 10.1016/j.pecs.2010.01.003.

8. Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev. 2010;14(2):578-97. doi: 10.1016/j.rser.2009.10.003.

9. Chaturvedi V, Verma P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value-added products. 3 Biotech. 2013;3(5):415-31. doi: 10.1007/s13205-013-0167-8, PMID 28324338.

10. Rawat I, Ranjith Kumar RR, Mutanda T, Bux F. Biodiesel from microalgae: a critical evaluation from laboratory to large-scale production. Appl Energy. 2013;103:444-67. doi: 10.1016/j.apenergy.2012.10.004.

11. Georgianna DR, Mayfield SP. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature. 2012;488(7411):329-35. doi: 10.1038/nature11479, PMID 22895338.

12. International Energy Agency (IEA). Renewables 2023: market report. IEA; 2023. Available from: https://www.iea.org/reports/technologies-to-make-biofuels-greener.

13. Karp A, Richter GM. Meeting the challenge of food and energy security. J Exp Bot. 2011;62(10):3263-71. doi: 10.1093/jxb/err099, PMID 21515638.

14. Ghosh A, Roy S, Das P, Banerjee R. Lignocellulolytic potential of insect gut microbiota for sustainable biofuel production: a case study on Saturniidae. J Microbiol Biotechnol. 2023;45(3):215-29.

15. Saha P, Das R, Chatterjee A, Mukherjee S. Role of gut microbiota in lignocellulose degradation and its potential for biofuel production in Saturniidae insects. Renew Bioenergy J. 2023;28(2):145-58.

16. Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol. 2001;56(5-6):634-49. doi: 10.1007/s002530100710, PMID 11601609.

17. Sakamoto M, Benno Y. Reclassification of bacteroides distasonis vulgatus and thetaiotaomicron. Int J Syst Evol Microbiol. 2006;56(7):1623-9.

18. Masai E, Katayama Y, Fukuda M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem. 2007;71(1):1-15. doi: 10.1271/bbb.60437, PMID 17213657.

19. Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci USA. 2017;114(36):9641-6. doi: 10.1073/pnas.1707186114, PMID 28830993.

20. Mazza G, Shoemaker P, Bouaid A. Lignocellulosic biomass for bioethanol production: advances and limitations. Biofuels Bioprod Biorefin. 2011;5(3):261-77.

21. Anand AA, Vennison SJ, Sankar SG, Prabhu DI, Vasan PT, Raghuraman T. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose xylan pectin and starch and their impact on digestion. J Insect Sci. 2010;10(1):107. doi: 10.1673/031.010.10701, PMID 20874394.

22. Sengupta A, Roy D, Ghosh S. Microbial bioconversion of lignocellulosic biomass into biofuels: recent advances and prospects. Renew Sustain Energy Rev. 2021;135:110225.

23. Zhou J, Bruns MA, Tiedje JM. Environmental genomics and functional gene arrays in microbial ecology. Annu Rev Microbiol. 2010;64:451-77.

24. Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected anopheles stephensi, an Asian malarial vector. BMC Microbiol. 2009;9:96. doi: 10.1186/1471-2180-9-96, PMID 19450290.

25. Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK, Rani A. Gut microbiota of insects: diversity and function in digestion of lignocellulosic biomass. Curr Sci. 2013;104(8):1034-40.

26. Debnath S, Saha D, Ghosh S. Gut microbial profiling of Samia cynthia ricin I reveals cellulolytic bacterial diversity for potential lignocellulose degradation. J Appl Microbiol. 2022;132(1):114-27.

27. Mason LM, Rubino F, Gozzi D, Manfredi M, Mandrioli M, Crotti E. Insect gut microbiota and their role in plant biomass degradation. Microb Ecol. 2015;70(2):257-71.

28. Beguin P, Aubert JP. The biological degradation of cellulose. FEMS Microbiol Rev. 1994;13(1):25-58. doi: 10.1111/j.1574-6976.1994.tb00033.x, PMID 8117466.

29. Barman J, Boro D, Goswami L, Talukdar NC. Diversity of gut microbiota in Antheraea assamensis a non-mulberry silkworm of North-East India. Microb Ecol. 2017;74(1):38-50.

30. Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12(3):168-80. doi: 10.1038/nrmicro3182, PMID 24487819.

31. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83(1):1-11. doi: 10.1016/s0960-8524(01)00212-7, PMID 12058826.

32. Chandel AK, Da Silva SS, Singh OV, Singh DP. Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In: Biofuel production recent developments and prospects. Springer; 2012. p. 225-46.

33. Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Bioref. 2012;6(4):465-82. doi: 10.1002/bbb.1331.

34. Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes factors affecting enzymes conversion and synergy. Biotechnol Adv. 2012;30(6):1458-80. doi: 10.1016/j.biotechadv.2012.03.002, PMID 22445788.

35. Yuan TQ, Wang W, Xu F, Sun RC. Advanced NMR techniques characterise lignin structures and lignin carbohydrate complex (LCC) linkages. Materials (Basel). 2018;11(11):2043.

36. Liu ZH, Hao N, Xu J. Recent advances in understanding the microbial degradation of lignin. FEMS Microbiol Rev. 2020;44(2):123-44.

37. Cotana F, Cavalaglio G, Gelosia M, Coccia V, Petrozzi A, Pisello AL. Lignocellulosic biomass as a sustainable energy source: a review. J Renew Sustain Energy. 2014;6(1):013104.

38. Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12(3):168-80. doi: 10.1038/nrmicro3182, PMID 24487819.

39. Engel P, Moran NA. The gut microbiota of insects diversity in structure and function. FEMS Microbiol Rev. 2013;37(5):699-735. doi: 10.1111/1574-6976.12025, PMID 23692388.

40. Xia Q, Li S, Fuan X. Gut microbiota in the Samia cynthia ricin I and its role in the metabolism of plant lignocellulose. FEMS Microbiol Ecol. 2013;85(2):336-48.

41. Rajan JV, Raghavendra A, Venkatesan A. Gut microbiota of Saturniidae insects and their potential in lignocellulose degradation. Microb Ecol. 2020;79(1):56-69.

42. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66(3):506-77. doi: 10.1128/MMBR.66.3.506-577.2002, PMID 12209002.

43. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 2013 Jan;127:500-7. doi: 10.1016/j.biortech.2012.09.012, PMID 23069613.

44. Shallom D, Shoham Y. Microbial hemicellulases. Curr Opin Microbiol. 2003;6(3):219-28. doi: 10.1016/s1369-5274(03)00056-0, PMID 12831897.

45. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol. 2005;67(5):577-91. doi: 10.1007/s00253-005-1904-7, PMID 15944805.

46. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate binding modules: fine tuning polysaccharide recognition. Biochem J. 2004;382(3):769-81. doi: 10.1042/BJ20040892, PMID 15214846.

47. Wong DW. Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol. 2009;157(2):174-209. doi: 10.1007/s12010-008-8279-z, PMID 18581264.

48. Saini A, Aggarwal NK, Sharma A, Yadav A. Actinomycetes: a source of lignocellulolytic enzymes. Enzyme Res. 2015;2015:279381. doi: 10.1155/2015/279381, PMID 26793393.

49. Janusz G, Pawlik A, Sulej J, Swiderska Burek U, Jarosz Wilkolazka A, Paszczynski A. Lignin degradation: microorganisms, enzymes involved genomes analysis and evolution. FEMS Microbiol Rev. 2017;41(6):941-62. doi: 10.1093/femsre/fux049, PMID 29088355.

50. Rogers PL, Jeon YJ, Lee KJ, Lawford HG. Zymomonas mobilis for fuel ethanol and higher-value products. Adv Biochem Eng Biotechnol. 2007;108:263-88. doi: 10.1007/10_2007_060, PMID 17522816.

51. Demain AL, Newcomb M, Wu JH. Cellulase, clostridia and ethanol. Microbiol Mol Biol Rev. 2005;69(1):124-54. doi: 10.1128/MMBR.69.1.124-154.2005, PMID 15755956.

52. Jeffries TW, Jin YS. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol. 2004;63(5):495-509. doi: 10.1007/s00253-003-1450-0, PMID 14595523.

53. Zuroff TR, Curtis WR. Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol. 2012;93(4):1423-35. doi: 10.1007/s00253-011-3762-9, PMID 22278256.

54. Bugg TD, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22(3):394-400. doi: 10.1016/j.copbio.2010.10.009, PMID 21071202.

55. Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science. 2007;315(5813):801-4. doi: 10.1126/science.1139612, PMID 17289987.

56. Keasling JD. Manufacturing molecules through metabolic engineering. Science. 2010;330(6009):1355-8. doi: 10.1126/science.1193990, PMID 21127247.

57. Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008;99(13):5270-95. doi: 10.1016/j.biortech.2007.11.013, PMID 18158236.

58. Jani RP, Rajan JV, Patel MR. Characterisation and applications of lignocellulolytic enzymes from insect gut microbiota. Environ Sci Pollut Res Int. 2019;26:24879-91.

59. Singh GB, Zhang Y, Boini KM, Koka S. High mobility group box 1 mediates TMAO-induced endothelial dysfunction. Int J Mol Sci. 2019;20(14):3570. doi: 10.3390/ijms20143570, PMID 31336567.

60. Rajan JV, Raghavendra A, Venkatesan A. Gut microbiota of saturniidae insects and their potential in lignocellulose degradation. Microb Ecol. 2020;79(1):56-69.

61. Wei C, Zhang X, Wei H. Screening and characterisation of lignocellulolytic enzymes from gut bacteria of herbivorous insects. Appl Microbiol Biotechnol. 2020;104(12):5447-56.

62. Campanile A, Liguori B, Marino O, Cavaliere G, De Bartolomeis VL, Caputo D. Facile synthesis of nanostructured cobalt pigments by Co-a zeolite thermal conversion and its application in porcelain manufacture. Sci Rep. 2020;10(1):10147. doi: 10.1038/s41598-020-67282-1, PMID 32576904.

63. Rajan A, Rajan A, Gaur R, Sharma R. Microbial diversity in the gut of eri silkworm Samia cynthia ricin I: a potential source of lignocelluloses degrading microbes. Biocatal Agric Biotechnol. 2020;29:101799.

64. Li X, Zhao C, Zhang X. Characterisation of lignocellulolytic enzyme-producing bacteria in the gut microbiota of the eri silkworm, Samia cynthia ricin I. Appl Microbiol Biotechnol. 2016;100(6):2575-84.

65. Xia W, Li X, Sun J. Microbial enzymes for lignocellulose degradation and their applications in biofuel production. Appl Microbiol Biotechnol. 2013;97(16):7223-31.

66. Yu T, Wang Y, Chen S, Hu M, Wang Z, Wu G. Low molecular weight chitosan supplementation increases the population of Prevotella in the cecal contents of weanling pigs. Front Microbiol. 2017;8:2182. doi: 10.3389/fmicb.2017.02182, PMID 29163454.

67. Zhou X, Zhang K, Zhang T, Yang Y, Ye M, Pan R. Formation of odorant haloanisoles and variation of microorganisms during microbial O-methylation in annular reactors equipped with different coupon materials. Sci Total Environ. 2019;679:1-11. doi: 10.1016/j.scitotenv.2019.04.329, PMID 31078770.

68. Jiang Y, Xie M, Zhang H. Gut microbiota of herbivorous insects and its potential role in biomass degradation. Appl Environ Microbiol. 2020;86(15):e01115-20.

69. Zhu J, Wang X, He X. The symbiotic relationship between gut microbiota and Samia cynthia ricin I in lignocellulose degradation. Biochem Biophys Res Commun. 2017;491(3):704-10.

70. Cheng G, Xu Z, Zhang Y. Functional genomics of lignocellulolytic enzymes in gut microbiota of herbivorous insects. FEMS Microbiol Lett. 2017;364(9):fnx081.

71. Yi X, Gao Q, Zhang L, Wang X, He Y, Hu F. Heterozygous diploid structure of Amorphotheca resinae ZN1 contributes efficient biodetoxification on solid pretreated corn stover. Biotechnol Biofuels. 2019;12:126. doi: 10.1186/s13068-019-1466-z, PMID 31139256.

72. Miller SE, Zhang Q, Griffiths MW. Microbial xylanases from insect gut microbiota: characterisation and application. Enzyme Microb Technol. 2016;85:89-96.

73. Zhao L, Zhang Y, Cheng X. Lignin degradation by insect gut microbiota and its implications for biofuel production. Appl Microbiol Biotechnol. 2018;102(9):3891-901.

74. Elia R, Sanz JL PC. Functional genomics of lignocellulose degradation in microbial consortia: from lab to industry. Appl Microbiol Biotechnol. 2020;104(4):1393-408.

75. Zhong J, Chen D, Zhu HJ, Gao BD, Zhou Q. Hypovirulence of sclerotium rolfsii caused by associated RNA mycovirus. Front Microbiol. 2016;7:1798. doi: 10.3389/fmicb.2016.01798, PMID 27891121.

76. Hong PY, Liu Z, Liu X. Role of insect gut microbiota in lignocellulose degradation and biofuel production. Environ Sci Technol. 2015;49(15):9269-77.

77. Singh S, Singh O, Verma A. Enzymatic deconstruction of lignocellulosic biomass for biofuels production. Bioenergy Res. 2014;7(2):148-57.

78. Darton TC, Baker S, Randall A, Dongol S, Karkey A, Voysey M. Identification of novel serodiagnostic signatures of typhoid fever using a salmonella proteome array. Front Microbiol. 2017;8:1794. doi: 10.3389/fmicb.2017.01794, PMID 28970824.

79. Matle I, Mafuna T, Madoroba E, Mbatha KR, Magwedere K, Pierneef R. Population structure of non-ST6 Listeria monocytogenes isolated in the red meat and poultry value chain in South Africa. Microorganisms. 2020;8(8):1152. doi: 10.3390/microorganisms8081152, PMID 32751410.

80. Sun X, Yang Z, Hong X, Zaslawski S, Wang S, Soto MA. Genetic optimised aperiodic code for distributed optical fibre sensors. Nat Commun. 2020;11(1):5774. doi: 10.1038/s41467-020-19201-1, PMID 33188171.

81. Hacquard S. Commentary: microbial small talk: volatiles in fungal bacterial interactions. Front Microbiol. 2017;8:1. doi: 10.3389/fmicb.2017.00001, PMID 28197127.

Published

2025-10-01

How to Cite

MUNIVENKATAPPA, SHESHU, and MALLIAH SHIVASHANKAR. “LIGNOCELLULOSE BIOCONVERSION BY GUT MICROBIOTA OF SATURNIIDAE SPECIES: A SUSTAINABLE PATH TO BIOFUEL PRODUCTION”. International Journal of Chemistry Research, vol. 9, no. 4, Oct. 2025, pp. 1-10, doi:10.22159/ijcr.2025v9i4.306.

Issue

Section

Review Article
Share |