DIFERULOYLMETHANE IDENTIFIED AGAINST CYSTEINE PROTEASES AND TMPRSS2 USING IN SILICO APPROACH

Authors

DOI:

https://doi.org/10.22159/ijcr.2025v9i3.270

Keywords:

Respiratory tract infection, Spices, MD simulation, Diferuloylmethane, Cysteine proteases, TMPRSS2

Abstract

Objective: The present research aims to identify the bioactive compounds as therapeutic agents targeting cellular pathways in respiratory tract infection.

Methods: Insilico docking was performed using Autodock Vina and visualized by Discovery Studio. MD (Molecular Dynamic) simulation was performed to identify the structural dynamics of the protein in a complex with a ligand.

Results: The findings of the present study shows that curcumin (diferuloylmethane) exhibited the high binding affinity among ten natural ligands targeting TMPRSS2 (–7.2 kcal/mol), RdRp (–7.7 kcal/mol), 3CLpro (–7.6 kcal/mol), PLpro (–7.3 kcal/mol), and EndoU (–7.0 kcal/mol) and MD simulations showed structural stability with root mean square deviation (RMSD) values: TMPRSS2–curcumin (0.088–3.05 Å) confirmed by hydrogen bond analysis.

Conclusion: The study provides a rationale that curcumin can be used as a therapeutic agent against respiratory tract infection, which regulates the expression of both pro-and anti-inflammatory factors.

Downloads

Download data is not yet available.

References

Teluguakula N, Chow VT, Pandareesh MD, Dasegowda V, Kurrapotula V, Gopegowda SM. SARS-CoV-2 and influenza co-infection: fair competition or sinister combination? Viruses. 2024;16(5):793. doi: 10.3390/v16050793, PMID 38793676.

Chen S, WU J, Yang X, Sun Q, Liu S, Rashid F. RNA-dependent RNA polymerase of the second human pegivirus exhibits a high fidelity feature. Microbiol Spectr. 2022;10(5):e0272922. doi: 10.1128/spectrum.02729-22, PMID 35980196.

Nejat R, Torshizi MF, Najafi DJ. S protein ACE2 and host cell proteases in SARS-CoV-2 cell entry and infectivity; is soluble ACE2 a two-blade sword? a narrative review. Vaccines (Basel). 2023;11(2):204. doi: 10.3390/vaccines11020204, PMID 36851081.

Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803. doi: 10.1021/acs.jnatprod.9b01285, PMID 32162523.

Diniz DO Nascimento L, Moraes AA, Costa KS, Pereira Galucio JM, Taube PS, Costa CM. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: new findings and potential applications. Biomolecules. 2020;10(7):988. doi: 10.3390/biom10070988, PMID 32630297.

Keramagi AR, Skariyachan S. Prediction of binding potential of natural leads against the prioritized drug targets of chikungunya and dengue viruses by computational screening. 3 Biotech. 2018;8(6):274. doi: 10.1007/s13205-018-1303-2, PMID 29868312.

Sakai K, Ami Y, Tahara M, Kubota T, Anraku M, Abe M. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. J Virol. 2014;88(10):5608-16. doi: 10.1128/JVI.03677-13, PMID 24600012.

Bhanu P, Kumar NH, Kumar SH, Relekar M, Anand DA, Kumar J. Comparative molecular docking analysis of the SARS CoV-2 spike glycoprotein with the human ACE-2 receptors and thrombin. Bioinformation. 2020;16(7):532-8. doi: 10.6026/97320630016532, PMID 32994678.

WU C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766-88. doi: 10.1016/j.apsb.2020.02.008, PMID 32292689.

SU HX, Yao S, Zhao WF, LI MJ, Liu J, Shang WJ. Anti-SARS-CoV-2 activities in vitro of shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin. 2020;41(9):1167-77. doi: 10.1038/s41401-020-0483-6, PMID 32737471.

Rut W, LV Z, Zmudzinski M, Patchett S, Nayak D, Snipas SJ. Activity profiling and crystal structures of inhibitor bound SARS-CoV-2 papain-like protease: a framework for anti-COVID-19 drug design. Sci Adv. 2020;6(42):eabd4596. doi: 10.1126/sciadv.abd4596, PMID 33067239.

Scheller C, Krebs F, Minkner R, Astner I, Gil Moles M, Watzig H. Physicochemical properties of SARS-CoV-2 for drug targeting virus inactivation and attenuation vaccine formulation and quality control. Electrophoresis. 2020;41(13-14):1137-51. doi: 10.1002/elps.202000121, PMID 32469436.

Kumari S, Kaladhar DS, Sandeep Solmon K, Malla RR, Kishore G. Anti-proliferative and metastatic protease inhibitory activities of protoberberines: an in silico and in vitro approaches. Process Biochem. 2013;48(10):1565-71. doi: 10.1016/j.procbio.2013.06.027.

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33, PMID 21982300.

Jia CY, LI JY, Hao GF, Yang GF. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov Today. 2020;25(1):248-58. doi: 10.1016/j.drudis.2019.10.014, PMID 31705979.

Kgk D, Kumari S, GS, Malla RR. Marine natural compound cyclo(L-leucyl-L-prolyl) peptide inhibits migration of triple-negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling. Chem Biol Interact. 2020;315:108872. doi: 10.1016/j.cbi.2019.108872, PMID 31669320.

Trott O, Olson AJ. Auto dock vina: improving the speed and accuracy of docking with a new scoring function efficient optimization and multithreading. J Comput Chem. 2010;31(2):455-61. doi: 10.1002/jcc.21334, PMID 19499576.

Herowati R, Widodo GP. Molecular docking studies of chemical constituents of Tinospora cordifolia on glycogen phosphorylase. Procedia Chem. 2014;13:63-8. doi: 10.1016/j.proche.2014.12.007.

Saleh MA, Mahmud S, Albogami S, El-Shehawi AM, Paul GK, Islam S. Biochemical and molecular dynamics study of a novel gh 43 α-l-arabinofuranosidase/β-xylosidase from caldicellulosiruptor saccharolyticus dsm8903. Front Bioeng Biotechnol. 2022;10:810542. doi: 10.3389/fbioe.2022.810542, PMID 35223784.

Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781-802. doi: 10.1002/jcc.20289, PMID 16222654.

Mac Kerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ. All atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102(18):3586-616. doi: 10.1021/jp973084f, PMID 24889800.

Lipinski CA. Drug like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235-49. doi: 10.1016/s1056-8719(00)00107-6, PMID 11274893.

Okoro BC, Dokunmu TM, Okafor E, Sokoya IA, Israel EN, Olusegun DO. The ethnobotanical bioactive compounds pharmacological activities and toxicological evaluation of garlic (Allium sativum): a review. Pharmacological Research Modern Chinese Medicine. 2023 Sep;8:100273. doi: 10.1016/j.prmcm.2023.100273.

Joe B, Vijaykumar M, Lokesh BR. Biological properties of curcumin cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr. 2004;44(2):97-111. doi: 10.1080/10408690490424702, PMID 15116757.

Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50(17):4087-95. doi: 10.1021/jm070295s, PMID 17663539.

Liu Z, Ying Y. The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front Cell Dev Biol. 2020;8:479. doi: 10.3389/fcell.2020.00479, PMID 32596244.

Published

2025-05-09

How to Cite

KUMARI, SEEMA. “DIFERULOYLMETHANE IDENTIFIED AGAINST CYSTEINE PROTEASES AND TMPRSS2 USING IN SILICO APPROACH”. International Journal of Chemistry Research, vol. 9, no. 3, May 2025, pp. 9-15, doi:10.22159/ijcr.2025v9i3.270.

Issue

Section

Research Article
Share |