SOLUTE-SOLVENT INTERACTIONS OF D-(+)-MALTOSE MONOHYDRATE IN AQUEOUS SODIUM SACCHARIN AT T= (298.15-313.15) K: VOLUMETRIC AND VISCOMETRIC APPROACH

Authors

  • PRAJAKTA JONDHALE Department of Chemistry, S. N. Arts, D. J. Malpani Commerce, and B. N. Sarada Science College (Autonomous) Sangamner-422605, Maharashtra, India
  • VALMIK JONDHALE Department of Chemistry, G. E. Society’s RNC Arts, JDB Commerce and NSC Science College, Nashik Road, Nashik-422101, Maharashtra, India https://orcid.org/0009-0009-0910-3560

DOI:

https://doi.org/10.22159/ijcr.2025v9i3.259

Keywords:

D( )-maltose monohydrate, Sodium saccharin, Density, Viscosity, Thermodynamic parameters

Abstract

Objective: The aim of the research is to explore the volumetric and viscometric properties of D(+)-maltose monohydrate and sodium saccharin.

Methods: These properties were assessed at temperatures between 298.15 K and 313.15 K in water and aqueous sodium saccharin (0.05, 0.15, and 0.3) mol·kg-1. The thermodynamic parameters of density () and viscosity (h), such as partial molar volume (), Masson's coefficients (), expansion coefficient (), transfer volume (, Hepler’s Constant apparent specific volume (ASV), Jones-Dole B-coefficient (B), temperature-dependence dB/dT were calculated from the experimental data.

Results: The positive values of ,,  suggests that D(+)-maltose monohydrate can form structures in water and at various concentrations of aqueous sodium saccharin and increase as the concentration of the cosolute rises. Similarly, negative values ofand dB/dT suggest the solute’s (D(+)-maltose monohydrate) ability to form structures with cosolute at studied concentrations.

Conclusion: Substantial interactions between the hydrophilic groups of the solute (D(+)-maltose monohydrate) and the Na+ ion of the cosolute (sodium saccharin) were found. The studied disaccharide retained its sweetness when combined with sodium saccharin.

Downloads

Download data is not yet available.

References

Caffall KH, Mohnen D. The structure, function and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res. 2009;344(14):1879-900. doi: 10.1016/j.carres.2009.05.021, PMID 19616198.

Franks F. Physical chemistry of small carbohydrates equilibrium solution properties. Pure Appl Chem. 1987;59(9):1189-202. doi: 10.1351/pac198759091189.

Birch GG, Pepper T. Protection of vitamin C by sugars and their hydrogenated derivatives. J Agric Food Chem. 1983;31(5):980-5. doi: 10.1021/jf00119a015.

Angyal SJ. Complexes of carbohydrates with metal cations. I. determination of the extent of complexing by NMR spectroscopy. Aust J Chem. 1972;25(9):1957-66. doi: 10.1071/CH9721957.

Kaiwar SP, Rao CP. Soluble complexes of early first-row transition metal ions with D-glucose. Carbohydr Res. 1992 Dec 31;237:203-10. doi: 10.1016/S0008-6215(92)84244-M.

Tajmir Riahi HA. Interaction of D-glucose with alkaline earth metal ions synthesis, spectroscopic and structural characterization of Mg(II) and Ca(II)-D-glucose adducts and the effect of metal ion binding on anomeric configuration of the sugar. Carbohydr Res. 1988;183(1):35-46. doi: 10.1016/0008-6215(88)80043-0, PMID 3233597.

Lichtenthaler FW. Towards improving the utility of ketoses as organic raw materials. Carbohydr Res. 1998;313(2):69-89. doi: 10.1016/S0008-6215(98)00222-5.

Dey S, Rahman M, Islam M, Dutta S, Hossain M, Dhar P. Studies on volumetric and viscometric properties of L-glutamic acid in aqueous solution of glucose over a range of temperatures (298K to 323K). Lett Appl Nanobiosci. 2020;9(4):1547-61. doi: 10.33263/LIANBS94.15471561.

Chattopadhyay S, Raychaudhuri U, Chakraborty R. Artificial sweeteners a review. J Food Sci Technol. 2014;51(4):611-21. doi: 10.1007/s13197-011-0571-1, PMID 24741154.

Harned HS, Owen BB. The physical chemistry of electrolytic solutions. ACS Monogr No. 137. 3rd ed; 1958.

Grenby TH, Parker KJ, Lindley MG. Developments in sweeteners-2. Elsevier; 1983.

Poshala K. Int J Eng Sci Comput. 2020;10:27416.

Periyasamy A. Artificial sweeteners. Int J Res Rev. 2019;6(1):120-8.

Nabors LO B, Gelardi RC. Alternative sweeteners. 2nd ed. New York: Marcel Dekker Inc; 1991.

Kretchmer N, Hollenbeck C. Sugars and sweeteners. Boca Raton: CRC Press; 1991.

Wani MM, Bhat TA. Sugar substitutes and artificial sweeteners. JMS SKIMS. 2019;22(1):90. doi: 10.33883/jms.v22i1.439.

Dey S, Rahman M, Islam M, Dutta S, Hossain M, Dhar P. Studies on volumetric and viscometric properties of L-glutamic acid in aqueous solution of glucose over a range of temperatures (298K to 323K). Lett Appl Nanobiosci. 2020;9(4):1547-61. doi: 10.33263/LIANBS94.15471561.

Kaur K, Arti S, Ghosh TK, Banipal TS, Banipal PK. To study the interactions between saccharide/their derivatives and bactericidal cefadroxil drug: volumetric acoustic and molecular docking studies. J Chem Thermodyn. 2021 Aug;159:106477. doi: 10.1016/j.jct.2021.106477.

Amirchand KD, Kaur S, Banipal TS, Singh V. Volumetric and 1H NMR spectroscopic studies of saccharides calcium lactate interactions in aqueous solutions. J Mol Liq. 2021 Jul 15;334:116077. doi: 10.1016/j.molliq.2021.116077.

Sharma M, Banipal PK, Banipal TS. Hydration characteristics structural effects and the taste quality of some polyhydroxy compounds in aqueous solutions of nicotinic acid (vitamin B3) at (288.15-318.15) K. Food Chem. 2020 Apr 25;310:125861. doi: 10.1016/j.foodchem.2019.125861, PMID 31767485.

Kharat SJ, Jondhale VR. Volumetric study of saccharide interactions (D-arabinose, D-xylose, and D-galactose) in sodium saccharin at 298.15 K. JASR. 2021;12(3):152-9. doi: 10.55218/JASR.202112322.

Kharat SJ, Jondhale VR. Volumetric study of monosaccharides (D-ribose and D-mannose) saccharin sodium salt in aqueous solutions at T = 298.15 K. IJFANS. 2022 Dec 3;11:3413-23.

Robertson GR. A graduated pycnometer. Ind Eng Chem Anal Ed. 1939;11(8):464. doi: 10.1021/ac50136a025.

Parker HC, Parker EW. Chloride solutions as determined with a new pycnometer. J Phys Chem. 1925;29(2):130-7. doi: 10.1021/j150248a002.

Kharat SJ, Nikam PS. Density and viscosity studies of binary mixtures of aniline+benzene and ternary mixtures of (aniline+Benzene+N,N-Dimethylformamide) at 298.15, 303.15, 308.15, and 313.15 K. J Mol Liq. 2007 Mar 15;131-132:81-6. doi: 10.1016/j.molliq.2006.08.053.

Kharat SJ. Density viscosity and ultrasonic velocity studies of aqueous solutions of sodium salycilate and its hydration free energy. Phys Chem Liq. 2014;52(1):7-16. doi: 10.1080/00319104.2013.795856.

Swindells JF. Physical methods of organic chemistry weissberger a editor. Part I. New York: Interscience; 1959. p. 689.

Subha MC, Rao SB. Densities and viscosities of propionic acid in benzene methylbenzene ethylbenzene and propylbenzene. J Chem Eng Data. 1988;33(4):404-6. doi: 10.1021/je00054a005.

Sathyanarayana B, Ranjithkumar B, Savitha Jyostna T, Satyanarayana N. Densities and viscosities of binary liquid mixtures of N-Methylacetamide with some chloroethanes and chloroethenes at T=308.15 K. J Chem Thermodyn. 2007;39(1):16-21. doi: 10.1016/j.jct.2006.06.009.

Kharat SJ. Partial molar volume jones dole coefficient and limiting molar isentropic compressibility of sodium ibuprofen in water and its hydration number and hydration free energy. Thermochim Acta. 2013 Aug 20;566:124-9. doi: 10.1016/j.tca.2013.05.030.

Lide DR. CRC handbook of chemistry and physics. 73rd ed. Boca Raton FL: CRC Press; 1992.

Engineering tool box H2O density specific weight and thermal expansion coefficient; 2003. Available from: https://www.engineeringtoolbox.com/H2O-density-specific-weight-d_595.html.

Kupke DW. Physical principles and techniques of physical chemistry part-C. New York: Academic press; 1973.

Masson DO. XXVIII. Solute molecular volumes in relation to solvation and ionization. Lond Edinb Dublin Philos Mag J Sci. 1929;8(49):218-35. doi: 10.1080/14786440808564880.

Ali A, Bidhuri P, Malik NA, Uzair S. Density viscosity and refractive index of mono di and tri-saccharides in aqueous glycine solutions at different temperatures. Arab J Chem. 2019;12(7):1684-94. doi: 10.1016/j.arabjc.2014.08.027.

Banipal PK, Banipal TS, Ahluwalia JC, Lark BS. Partial molar heat capacities and volumes of transfer of some saccharides from water to aqueous urea solutions at T=298.15 K. J Chem Thermodyn. 2000;32(10):1409-32. doi: 10.1006/jcht.2000.0689.

Franks F, Water A. Comprehensive treatise: volume 4. Aqueous solutions of amphiphiles and macromolecules; water. Springer; 1975.

Franks F, Quickenden MA, Reid DS, Watson B. Calorimetric and volumetric studies of dilute aqueous solutions of cyclic ether derivatives. Trans Faraday Soc. 1970;66:582-9. doi: 10.1039/tf9706600582.

Nain AK, Chand D. Volumetric ultrasonic and viscometric behaviour of glycine Dl-alanine and l-valine in aqueous 1,4-butanediol solutions at different temperatures. J Chem Thermodyn. 2009;41(2):243-9. doi: 10.1016/j.jct.2008.09.008.

Banipal PK, Singh V, Banipal TS. Effect of sodium acetate on the volumetric behaviour of some mono di and tri-saccharides in aqueous solutions over temperature range (288.15 to 318.15) K. J Chem Thermodyn. 2010;42(1):90-103. doi: 10.1016/j.jct.2009.07.015.

Freidman HL, Krishnan CV. In: Franks F, Editors, Chapter 1. Water: a comprehensive Treatise. New York: Plenum press; 1993.

Gurney RW. Ionic processes in solution. New York: McGraw Hill; 1953.

Desnoyers JE, Arel M, Perron G, Jolicoeur C. Apparent molal volumes of alkali halides in water at 25˚. Influence of structural hydration interactions on the concentration dependence. J Phys Chem. 1969;73(10):3346-51. doi: 10.1021/j100844a032.

Hepler LG. Thermal expansion and structure in water and aqueous solutions. Can J Chem. 1969;47(24):4613-7. doi: 10.1139/v69-762.

Roy MN, Das RK, Bhattacharjee A. Apparent molar volume viscosity B-coefficient and adiabatic compressibility of tetrabutylammonium bromide in aqueous ascorbic acid solutions at T = 298.15, 308.15, and 318.15 K. Russ J Phys Chem. 2010;84(13):2201-10. doi: 10.1134/S0036024410130017.

Shamil S, Birch GG. A conceptual model of taste receptors. Endeavour. 1990;14(4):191-3. doi: 10.1016/0160-9327(90)90043-q, PMID 1706257.

Parke SA, Birch GG, Portmann MO, Kilcast DA. A study of the solution properties of selected binary mixtures of bulk and intense sweeteners in relation to their psychophysical characteristics. Food Chem. 1999;67(3):247-59. doi: 10.1016/S0308-8146(99)00125-9.

Jones G, Dole M. The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J Am Chem Soc. 1929;51(10):2950-64. doi: 10.1021/ja01385a012.

Pande R. Partial molar volumes and viscosity b-coefficient of n-phenylbenzohydroxamic acid in dimethylsulfoxide at different temperatures. J Chem Eng Data. 2008;53(7):1458-61. doi: 10.1021/je7006956.

Kaminsky M. Ion solvent interaction and the viscosity of strong electrolyte solutions. Discuss Faraday Soc. 1957;24(0):171-9. doi: 10.1039/df9572400171.

Marcus Y. Viscosity B-coefficients structural entropies and heat capacities and the effects of ions on the structure of water. J Solut Chem. 1994;23(7):831-48. doi: 10.1007/BF00972677.

Feakins D, Freemantle DJ, Lawrence KG. Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous non-aqueous and methanol + water systems. J Chem Soc Faraday Trans 1. 1974;70. doi: 10.1039/f19747000795.

Out DJ, Los JM. Viscosity of aqueous solutions of univalent electrolytes from 5 to 95 °C. J Solut Chem. 1980;9(1):19-35. doi: 10.1007/BF00650134.

Published

2025-04-15

How to Cite

JONDHALE, PRAJAKTA, and VALMIK JONDHALE. “SOLUTE-SOLVENT INTERACTIONS OF D-(+)-MALTOSE MONOHYDRATE IN AQUEOUS SODIUM SACCHARIN AT T= (298.15-313.15) K: VOLUMETRIC AND VISCOMETRIC APPROACH”. International Journal of Chemistry Research, vol. 9, no. 3, Apr. 2025, pp. 16-21, doi:10.22159/ijcr.2025v9i3.259.

Issue

Section

Research Article
Share |