Molecular docking, Ligand, Receptor, Drug design, Docking tool, Mechanism of docking, Protein


The computer modelling of structural complexes generated from two or more interacting molecules are referred to as molecular docking. It is an indispensable tool in computer-aided drug design and structural molecular biology. Using this technology, large libraries of compounds may be digitally screened, and the results can be graded along with structural assumptions about how the ligands impact the target's reduction. Recent advances in the synthesis of anti-infectious medicines prompted by structural insights have enabled the application of computer-assisted drug design in the quest for innovative mechanism-or structure-based drugs. Molecular docking is an important phase in the drug development process because it determines the best positions for molecules to occupy when they are coupled together and predicts how effectively two molecules will bind once they have been docked. The input structure's design is also critical, and the results are assessed using sampling methods and scoring systems. The recently developed docking software Local Move Monte Carlo provides a strong choice for customizable receptor docking strategies. Docking is a technique for determining how ligands and proteins interact. It is structurally sound and compatible with computer-assisted medication design. Successful docking discovers high-dimensional spaces and ranks function utilisation, resulting in a candidate docking rating that is acceptable. It may also be used to screen vast libraries of molecules and offer structural hypotheses for the process.


Download data is not yet available.


Lengauer T, Rarey M. Computational methods for biomolecular docking. Curr Opin Struct Biol. 1996;6(3):402-6. doi: 10.1016/s0959-440x(96)80061-3, PMID 8804827.

Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935-49. doi: 10.1038/nrd1549, PMID 15520816.

Morris GM, Lim Wilby M. Molecular docking. Methods Mol Biol. 2008;443:365-82. doi: 10.1007/978-1-59745-177-2_19, PMID 18446297.

Raval K, Ganatra T. Basics, types and applications of molecular docking: a review. IJCAAP. 2022;7(1):12-6. doi: 10.18231/j.ijcaap.2022.003.

Dnyandev, Khemnar, Galave, Vishal, Kulkarni, Vaishali, Chandrakant, Menkudale, Otari, Kishor. A review on molecular docking international research. Pure Appl Chem. 2021:60-8.

Gschwend DA, Good AC, Kuntz ID. Molecular docking towards drug discovery. J Mol Recognit. 1996;9(2):175-86. doi: 10.1002/(sici)1099-1352(199603)9:2<175::aid-jmr260>3.0.co;2-d, PMID 8877811.

Silky, Shamsi, Adnan Ahmad, Sharique Singh, Shivani Srivastava, Mrinal Shukla, Shivangi Rai. Mol docking simplified lit rev. Advances in Medical, Dental and Health Sciences. 2022;4:37-44.

Jain AN. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem. 2003;46(4):499-511. doi: 10.1021/jm020406h, PMID 12570372.

McMartin C, Bohacek RS. QXP: powerful, rapid computer algorithms for structure-based drug design. J Comput Aided Mol Des. 1997;11(4):333-44. doi: 10.1023/a:1007907728892, PMID 9334900.

Schnecke V, Kuhn LA. Virtual screening with solvation and Ligandinduced complementarity, Perspect. Drug Discov. 2000;20:171-90.

Gaba M, Gaba P, Sarbjot S, Gupta GD. An overview on molecular docking. Int J Drug Dev Res. 2010;2(2):219-31.

Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. doi: 10.2174/157340911795677602, PMID 21534921.

Brint AT, Willett P. Algorithms for the identification of three-dimensional maximal common substructures. J Chem Inf Comput Sci. 1987;27(4):152-8. doi: 10.1021/ci00056a002.

Fischer D, Norel R, Wolfson H, Nussinov R. Surface motifs by a computer vision technique: searches, detection, and implications for protein-ligand recognition. Proteins. 1993;16(3):278-92. doi: 10.1002/prot.340160306, PMID 8394000.

Norel R, Fischer D, Wolfson HJ, Nussinov R. Molecular surface recognition by a computer vision-based technique. Protein Eng. 1994;7(1):39-46. doi: 10.1093/protein/7.1.39, PMID 8140093.

Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161(2):269-88. doi: 10.1016/0022-2836(82)90153-x, PMID 7154081.

Miller MD, Kearsley SK, Underwood DJ, Sheridan RP. FLOG: a system to select ”quasi-flexible” ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des. 1994;8(2):153-74. doi: 10.1007/BF00119865, PMID 8064332.

Diller DJ, Merz KM Jr. High throughput docking for library design and library prioritization. Proteins. 2001;43(2):113-24. doi: 10.1002/1097-0134(20010501)43:2<113::aid-prot1023>3.0.co;2-t, PMID 11276081.

Burkhard P, Taylor P, Walkinshaw MD. An example of a protein-ligand found by database mining: description of the docking method and its verification by a 2.3 A X-ray structure of a thrombin-ligand complex. J Mol Biol. 1998;277(2):449-66. doi: 10.1006/jmbi.1997.1608, PMID 9514757.

Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 1996;261(3):470-89. doi: 10.1006/jmbi.1996.0477, PMID 8780787.

DesJarlais RL, Sheridan RP, Dixon JS, Kuntz ID, Venkataraghavan R. Docking flexible ligands to macromolecular receptors by molecular shape. J Med Chem. 1986;29(11):2149-53. doi: 10.1021/jm00161a004, PMID 3783576.

Leach AR, Kuntz ID. Conformational analysis of flexible ligands in macromolecular receptor sites. J Comput Chem. 1992;13(6):730-48. doi: 10.1002/jcc.540130608.

Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des. 2001;15(5):411-28. doi: 10.1023/a:1011115820450, PMID 11394736.

Welch W, Ruppert J, Jain AN. Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol. 1996;3(6):449-62. doi: 10.1016/s1074-5521(96)90093-9, PMID 8807875.

Schnecke V, Kuhn LA. Virtual screening with solvation and ligand-induced complementarity. Perspect Drug Discov Des. 2000;20(1):171-90. doi: 10.1023/A:1008737207775.

Zsoldos Z, Reid D, Simon A, Sadjad BS, Johnson AP. eHiTS: an innovative approach to the docking and scoring function problems. Curr Protein Pept Sci. 2006;7(5):421-35. doi: 10.2174/138920306778559412, PMID 17073694.

Goodsell DS, Lauble H, Stout CD, Olson AJ. Automated docking in crystallography: analysis of the substrates of aconitase. Proteins. 1993;17(1):1-10. doi: 10.1002/prot.340170104, PMID 8234239.

Hart TN, Read RJ. A multiple-start monte carlo docking method. Proteins. 1992;13(3):206-22. doi: 10.1002/prot.340130304, PMID 1603810.

Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulated annealing. Proteins. 1990;8(3):195-202. doi: 10.1002/prot.340080302, PMID 2281083.

Abagyan R, Totrov M, Kuznetsov D. ICM-a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem. 1994;15(5):488-506. doi: 10.1002/jcc.540150503.

Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639-62. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.

Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997;267(3):727-48. doi: 10.1006/jmbi.1996.0897, PMID 9126849.

Oshiro CM, Kuntz ID, Dixon JS. Flexible ligand docking using a genetic algorithm. J Comput Aided Mol Des. 1995;9(2):113-30. doi: 10.1007/BF00124402, PMID 7608743.

Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using gold. Proteins. 2003;52(4):609-23. doi: 10.1002/prot.10465, PMID 12910460.

Clark KP, Ajay. Flexible ligand docking without parameter adjustment across fourligand–receptor complexes. J Comput Chem. 1995;16(10):1210-26. doi: 10.1002/jcc.540161004.

Taylor JS, Burnett RM. Darwin: a program for docking flexible molecules. Proteins. 2000;41(2):173-91. doi: 10.1002/1097-0134(20001101)41:2<173::AID-PROT30>3.0, PMID 10966571.

Dias R, de Azevedo WF. Molecular docking algorithms. Curr Drug Targets. 2008;9(12):1040-7. doi: 10.2174/138945008786949432, PMID 19128213.

Mitchell JBO, Laskowski RA, Alex A, Thornton JM. BLEEP? potential of mean force describing protein-ligand interactions: I. Generating potential. J Comput Chem. 1999;20(11):1165-76. doi: 10.1002/(SICI)1096-987X(199908)20:11<1165::AID-JCC7>3.0.CO;2-A.

Ishchenko AV, Shakhnovich EI. SMall molecule growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. J Med Chem. 2002;45(13):2770-80. doi: 10.1021/jm0105833, PMID 12061879.

Feher M, Deretey E, Roy S. BHB: A simple knowledge-based scoring function to improve the efficiency of database screening. J Chem Inf Comput Sci. 2003;43(4):1316-27. doi: 10.1021/ci030006i, PMID 12870925.

Verkhivker G, Appelt K, Freer ST, Villafranca JE. Empirical free energy calculations of ligand-protein crystallographic complexes. I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity. Protein Eng. 1995;8(7):677-91. doi: 10.1093/protein/8.7.677, PMID 8577696.

Wallqvist A, Jernigan RL, Covell DG. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design. Protein Sci. 1995;4(9):1881-903. doi: 10.1002/pro.5560040923, PMID 8528086.

Gohlke H, Hendlich M, Klebe G. Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol. 2000;295(2):337-56. doi: 10.1006/jmbi.1999.3371, PMID 10623530.

DeWitte RS, Shakhnovich EI. SMoG: de novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and Supporting Evidence. J Am Chem Soc. 1996;118(47):11733-44. doi: 10.1021/ja960751u.

Charifson PS, Corkery JJ, Murcko MA, Walters WP. Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem. 1999;42(25):5100-9. doi: 10.1021/jm990352k, PMID 10602695.

Feher M. Consensus scoring for protein-ligand interactions. Drug Discov Today. 2006;11(9-10):421-8. doi: 10.1016/j.drudis.2006.03.009, PMID 16635804.

Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB. Consensus scoring for ligand/protein interactions. J Mol Graph Model. 2002;20(4):281-95. doi: 10.1016/s1093-3263(01)00125-5, PMID 11858637.

Zothantluanga JH, Chetia D. A beginner’s guide to molecular docking. sciphy. 2022;1(2):37-40. doi: 10.58920/sciphy01020037.

Shoichet BK, Mcgovern SL, Wei B, Irwin JJ. Lead discovery using molecular docking. Curr Opin Chem Biol. 2002;6(4):439-46. doi: 10.1016/s1367-5931(02)00339-3, PMID 12133718.

Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem. 2006;49(23):6789-801. doi: 10.1021/jm0608356, PMID 17154509.

Yuriev E, Ramsland PA. Latest developments in molecular docking: 2010-2011 in review. J Mol Recognit. 2013;26(5):215-39. doi: 10.1002/jmr.2266, PMID 23526775.

Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017;9(2):91-102. doi: 10.1007/s12551-016-0247-1, PMID 28510083.

Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023;13(1):13398. doi: 10.1038/s41598-023-40160-2, PMID 37592012.

Meza Menchaca T, Zepeda R, Past JP C. Present, and future of molecular docking; 2020. doi: 10.5772/intechopen.90921.

Drug discovery informatics market size, S.T.A.R. drug discovery informatics market size, share and trends analysis report by workflow (discovery, development), by mode (in-house, outsourced), by services, by region, vendor landscape, and segment forecasts 2018-2025; 2016. p. 978.

Berman HM, Bhat TN, Bourne PE, Feng Z, Gilliland G, Weissig H. The protein data bank and the challenge of structural genomics. Nat Struct Biol. 2000;7Suppl:957-9. doi: 10.1038/80734, PMID 11103999.

Wang X, Song K, Li L, Chen L. Structure-based drug design strategies and challenges. Curr Top Med Chem. 2018;18(12):998-1006. doi: 10.2174/1568026618666180813152921, PMID 30101712.

Markosian C, Di Costanzo L, Sekharan M, Shao C, Burley SK, Zardecki C. Analysis of impact metrics for the protein data Bank. Sci Data. 2018;5:180212. doi: 10.1038/sdata.2018.212, PMID 30325351.

Rentzsch R, Renard BY. Docking small peptides remains a great challenge: an assessment using AutoDock vina. Brief Bioinform. 2015;16(6):1045-56. doi: 10.1093/bib/bbv008, PMID 25900849.

Wojcikowski M, Ballester PJ, Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep. 2017;7:46710. doi: 10.1038/srep46710, PMID 28440302.

Han JH, Batey S, Nickson AA, Teichmann SA, Clarke J. The folding and evolution of multidomain proteins. Nat Rev Mol Cell Biol. 2007;8(4):319-30. doi: 10.1038/nrm2144, PMID 17356578.

Mobley DL, Dill KA. Binding of small-molecule ligands to proteins: ”what you see” is not always ”what you get”. Structure. 2009;17(4):489-98. doi: 10.1016/j.str.2009.02.010, PMID 19368882.



How to Cite




Review Article
Share |