INHIBITORS OF BROMODOMAIN-4 AND CYCLOOXYGENASE-2: A REVIEW ON THE ADVANTAGEOUS EFFECT OF DUAL-TARGET APPROACH IN CANCER TREATMENT

Authors

  • EKTA SINGH Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India

DOI:

https://doi.org/10.22159/ijcr.2023v7i1.210

Keywords:

Bromodomain, BRD-4, Cyclooxygenase-2, COX2, Antiproliferative activity, dual target

Abstract

The main objective of this review article is to establish a correlation between the roles of BRD-4 and COX-2 inhibitors in anticancer treatment. This article aims to project the synergistic benefits of a dual-target approach. A Literature review was conducted using the keywords such as BRD-4, cyclooxygenase-2, COX-2, Anticancer, anti-proliferative BRD-4 inhibitors, COX-2 inhibitors and dual-target therapy. Searches were made using the mentioned keywords individually as well as in combinations in PubMed, Science Direct and Google Scholar for the past ten years. The correlation between inflammatory mediators, particularly COX-2 and bromodomain in particular BRD-4 in cancers has been studied in a few research articles. These targets have been used for the development of anti-proliferative drugs individually as well as in combination. Combination therapy has been proposed to be better than mono-drug therapy. The need for a dual target concept has arisen to improve the efficacy of chemotherapy. The cancers where BRD-4 is over-expressed and inflammation is observed, it may be very much advantageous to give a combination therapy of BRD-4 and COX-2 inhibitors. Moreover, if the COX-2 inhibitors show anti-proliferative action, then the combination therapy is expected to work better than mono chemotherapy.

Downloads

Download data is not yet available.

References

World Health Organization. Cancer details. Available from. https://www.who.int/news-room/fact-sheets/detail/cancer. [Last accessed on 03 Feb 2022]

Andrieu GP, Denis GV. BET proteins exhibit transcriptional and functional opposition in the epithelial-to-mesenchymal Transition Distinct. Mol Cancer Res. 2018;16(4):580-6. doi: 10.1158/1541-7786.MCR-17-0568. PMCID PMC5882530.

Taniguchi Y. The bromodomain and extra-terminal domain (BET) family: functional anatomy of BET paralogous proteins. Int J Mol Sci. 2016;17(11):1849. doi: 10.3390/ijms17111849, PMID 27827996.

Fryland T, Christensen JH, Pallesen J, Mattheisen M, Palmfeldt J, Bak M. Identification of the BRD1 interaction network and its impact on mental disorder risk. Genome Med. 2016;8(1):53. doi: 10.1186/s13073-016-0308-x. PMID 27142060.

Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK, Robey PG. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci USA. 2012;109(18):6927-32. doi: 10.1073/pnas.1120422109, PMID 22509028.

Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17(1):164. doi: 10.1186/s12943-018-0915-9, PMID 30466442.

Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase‐2 in cancer: a review. J Cell Physiol. 2019;234(5):5683-99. doi: 10.1002/jcp.27411, PMID 30341914.

Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399(6735):491-6. doi: 10.1038/20974, PMID 10365964.

Shi J, Cao J, Zhou BP. Twist-BRD4 complex: potential drug target for basal-like breast cancer. Curr Pharm Des. 2015;21(10):1256-61. doi: 10.2174/1381612821666141211153853, PMID 25506891.

Wu SY, Lee CF, Lai HT, Yu CT, Lee JE, Zuo H. Opposing functions of BRD4 isoforms in breast cancer. Mol Cell. 2020;78(6):1114-1132.e10. doi: 10.1016/j.molcel.2020.04.034. PMID 32446320.

Liu B, Liu X, Han L, Chen X, Wu X, Wu J. BRD4-directed super-enhancer organization of transcription repression programs links to chemotherapeutic efficacy in breast cancer. Proc Natl Acad Sci USA. 2022;119(6). doi: 10.1073/pnas.2109133119. PMID 35105803.

Lu L, Chen Z, Lin X, Tian L, Su Q, An P. Inhibition of BRD4 suppresses the malignancy of breast cancer cells via regulation of Snail. Cell Death Differ. 2020;27(1):255-68. doi: 10.1038/s41418-019-0353-2, PMID 31114028.

Jing X, Shao S, Zhang Y, Luo A, Zhao L, Zhang L. BRD4 inhibition suppresses PD-L1 expression in triple-negative breast cancer. Exp Cell Res. 2020;392(2):112034. doi: 10.1016/j.yexcr.2020.112034. PMID 32339606.

Andrieu G, Tran AH, Strissel KJ, Denis GV. BRD4 regulates breast cancer dissemination through Jagged1/Notch1 signaling BRD4. Cancer Res. 2016;76(22):6555-67. doi: 10.1158/0008-5472.CAN-16-0559. PMID 27651315.

Moon H, White AC, Borowsky AD. New insights into the functions of Cox-2 in skin and esophageal malignancies. Exp Mol Med. 2020;52(4):538-47. doi: 10.1038/s12276-020-0412-2, PMID 32235869.

Qin ZY, Wang T, Su S, Shen LT, Zhu GX, Liu Q. BRD4 promotes gastric cancer progression and metastasis through acetylation-dependent stabilization of snail. Cancer Res. 2019;79(19):4869-81. doi: 10.1158/0008-5472.CAN-19-0442. PMID 31311807.

Dong X, Hu X, Chen J, Hu D, Chen LF. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis. Cell Death Dis. 2018;9(2):203. doi: 10.1038/s41419-017-0181-6, PMID 29434197.

Song H, Shi L, Xu Y, Xu T, Fan R, Cao M. BRD4 promotes the stemness of gastric cancer cells via attenuating miR-216a-3p-mediated inhibition of Wnt/β-catenin signaling. Eur J Pharmacol. 2019;852:189-97. doi: 10.1016/j.ejphar.2019.03.018. PMID 30876979.

Ba M, Long H, Yan Z, Wang S, Wu Y, Tu Y. BRD4 promotes gastric cancer progression through the transcriptional and epigenetic regulation of c‐MYC. J Cell Biochem. 2018;119(1):973-82. doi: 10.1002/jcb.26264, PMID 28681984.

Hu Y, Zhou J, Ye F, Xiong H, Peng L, Zheng Z. BRD4 inhibitor inhibits colorectal cancer growth and metastasis. Int J Mol Sci. 2015;16(1):1928-48. doi: 10.3390/ijms16011928, PMID 25603177.

Otto C, Schmidt S, Kastner C, Denk S, Kettler J, Müller N. Targeting bromodomain-containing protein 4 (BRD4) inhibits MYC expression in colorectal cancer cells. Neoplasia. 2019;21(11):1110-20. doi: 10.1016/j.neo.2019.10.003. PMID 31734632.

Zhang P, Li R, Xiao H, Liu W, Zeng X, Xie G. BRD4 inhibitor AZD5153 suppresses the proliferation of colorectal cancer cells and sensitizes the anticancer effect of PARP inhibitor. Int J Biol Sci. 2019;15(9):1942-54. doi: 10.7150/ijbs.34162, PMID 31523195.

Zheng R, Zhang K, Tan S, Gao F, Zhang Y, Xu W. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIF3h interaction. Mol Cancer. 2022;21(1):49. doi: 10.1186/s12943-021-01471-y. PMID 35164758.

Wang W, Tang YA, Xiao Q, Lee WC, Cheng B, Niu Z. Stromal induction of BRD4 phosphorylation results in chromatin remodeling and BET inhibitor resistance in colorectal cancer. Nat Commun. 2021;12(1):4441. doi: 10.1038/s41467-021-24687-4. PMID 34290255.

Ni M, Li J, Zhao H, Xu F, Cheng J, Yu M. BRD4 inhibition sensitizes cervical cancer to radiotherapy by attenuating DNA repair. Oncogene. 2021;40(15):2711-24. doi: 10.1038/s41388-021-01735-3, PMID 33712705.

Dai X, Gan W, Li X, Wang S, Zhang W, Huang L. Prostate cancer–associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat Med. 2017;23(9):1063-71. doi: 10.1038/nm.4378, PMID 28805820.

Shafran JS, Andrieu GP, Gyorffy B, Denis GV. BRD4 regulates metastatic potential of castration-resistant prostate cancer through AHNAK. Mol Cancer Res. 2019;17(8):1627-38. doi: 10.1158/1541-7786.MCR-18-1279. PMID 31110158.

Guan H, You Z, Wang C, Fang F, Peng R, Mao L. MicroRNA‐200a suppresses prostate cancer progression through BRD4/AR signaling pathway. Cancer Med. 2019;8(4):1474-85. doi: 10.1002/cam4.2029, PMID 30784214.

Shafran JS, Jafari N, Casey AN, Gyorffy B, Denis GV. BRD4 regulates key transcription factors that drive epithelial–mesenchymal transition in castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(1):268-77. doi: 10.1038/s41391-020-0246-y, PMID 32690869.

Wang SP, Li Y, Huang SH, Wu SQ, Gao LL, Sun Q. Discovery of potent and novel dual PARP/BRD4 inhibitors for efficient treatment of pancreatic cancer. J Med Chem. 2021;64(23):17413-35. doi: 10.1021/acs.jmedchem.1c01535. PMID 34813314.

Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524-8. doi: 10.1038/nature10334, PMID 21814200.

Szczepanski AP, Zhao Z, Sosnowski T, Goo YA, Bartom ET, Wang L. ASXL3 bridges BRD4 to BAP1 complex and governs enhancer activity in small cell lung cancer. Genome Med. 2020;12(1):63. doi: 10.1186/s13073-020-00760-3, PMID 32669118.

Zong D, Gu J, Cavalcante GC, Yao W, Zhang G, Wang S. BRD4 levels determine the response of human lung cancer cells to BET degraders that potently induce apoptosis through suppression of Mcl-1BET. Cancer Res. 2020;80(11):2380-93. doi: 10.1158/0008-5472.CAN-19-3674. PMID 32156781.

Xu W, Sun D, Wang Y, Zheng X, Li Y, Xia Y. Inhibitory effect of microRNA-608 on lung cancer cell proliferation, migration, and invasion by targeting BRD4 through the JAK2/STAT3 pathway. Bosn J Basic Med Sci. 2020;20(3):347-56. doi: 10.17305/bjbms.2019.4216, PMID 31621555.

Piha Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA. Phase 1 study of molibresib (GSK525762), a bromodomain and extra-terminal domain protein inhibitor, in NUT carcinoma and other solid tumors. JNCI Cancer Spectr. 2020;4(2):pkz093. doi: 10.1093/jncics/pkz093, PMID 32328561.

Zhao Y, Yang CY, Wang S. The making of I-BET762, a BET bromodomain inhibitor now in clinical development. J Med Chem. 2013;56(19):7498-500. doi: 10.1021/jm4014407, PMID 24107192.

Berthon C, Raffoux E, Thomas X, Vey N, Gomez Roca C, Yee K. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016;3(4):e186-95. doi: 10.1016/S2352-3026(15)00247-1, PMID 27063977.

Seal J, Lamotte Y, Donche F, Bouillot A, Mirguet O, Gellibert F. Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg Med Chem Lett. 2012;22(8):2968-72. doi: 10.1016/j.bmcl.2012.02.041. PMID 22437115.

Siu KT, Ramachandran J, Yee AJ, Eda H, Santo L, Panaroni C. Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma. Leukemia. 2017;31(8):1760-9. doi: 10.1038/leu.2016.355, PMID 27890933.

Xu XC. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs. 2002;13(2):127-37. doi: 10.1097/00001813-200202000-00003, PMID 11901304.

Kucukguzel SG, Coskun I, Aydın S, Aktay G, Gursoy S, Cevik O. Synthesis and characterization of celecoxib derivatives as possible anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV agents. Molecules. 2013;18(3):3595-614. doi: 10.3390/molecules18033595, PMID 23519201.

Zhong B, Cai X, Chennamaneni S, Yi X, Liu L, Pink JJ. From COX-2 inhibitor nimesulide to potent anti-cancer agent: synthesis, in vitro, in vivo and pharmacokinetic evaluation. Eur J Med Chem. 2012;47(1):432-44. doi: 10.1016/j.ejmech.2011.11.012. PMID 22119125.

Gungor T, Ozleyen A, Yılmaz YB, Siyah P, Ay M, Durdagı S. New nimesulide derivatives with amide/sulfonamide moieties: selective COX-2 inhibition and antitumor effects. Eur J Med Chem. 2021;221:113566. doi: 10.1016/j.ejmech.2021.113566. PMID 34077833.

El-Kashef H, El-Emary T, Verhaeghe P, Vanelle P, Samy M. Anticancer and anti-inflammatory activities of some new pyrazolo[3,4-b]pyrazines. Molecules. 2018;23(10):2657. doi: 10.3390/molecules23102657, PMID 30332801.

Sever B, Altıntop MD, Kuş G, Ozkurt M, Ozdemir A, Kaplancıklı ZA. Indomethacin based new triazolothiadiazine derivatives: synthesis, evaluation of their anticancer effects on T98 human glioma cell line related to COX-2 inhibition and docking studies. Eur J Med Chem. 2016;113:179-86. doi: 10.1016/j.ejmech.2016.02.036. PMID 26927686.

Tran PHL, Lee BJ, Tran TTD. Current studies of aspirin as an anticancer agent and strategies to strengthen its therapeutic application in cancer. Curr Pharm Des. 2021;27(18):2209-20. doi: 10.2174/1381612826666201102101758, PMID 33138752.

Lin S, Zhang Y, Wang Z, Zhang S, Li Y, Fan Y. Preparation of novel anthraquinone-based aspirin derivatives with anti-cancer activity. Eur J Pharmacol. 2021;900:174020. doi: 10.1016/j.ejphar.2021.174020. PMID 33741381.

Dai M, Hu S, Liu CF, Jiang L, Yu W, Li ZL. BPTF cooperates with p50 NF-κB to promote COX-2 expression and tumor cell growth in lung cancer. Am J Transl Res. 2019;11(12):7398-409. PMID 31934287.

Published

01-01-2023

How to Cite

SINGH, E. “INHIBITORS OF BROMODOMAIN-4 AND CYCLOOXYGENASE-2: A REVIEW ON THE ADVANTAGEOUS EFFECT OF DUAL-TARGET APPROACH IN CANCER TREATMENT”. International Journal of Chemistry Research, vol. 7, no. 1, Jan. 2023, pp. 1-5, doi:10.22159/ijcr.2023v7i1.210.

Issue

Section

Review Article