MOLECULAR DOCKING STUDIES OF MONOMERIC WILDTYPE AND MUTANT (H81A, H49R) SOD1 WITH EDARAVONE AND RILUZOLE
DOI:
https://doi.org/10.22159/ijcr.2022v6i4.207Keywords:
Amyotrophic lateral sclerosis (ALS), Cu-Zn superoxide dismutase1 (SOD1), Edaravone, Riluzole, Molecular dockingAbstract
Objective: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that causes progressive loss of the upper and lower motor neurons in the brain and spinal cord. SOD1 was the first gene linked to ALS, in which more than 150 mutations throughout the sequence of the protein have been found to be associated with ALS.
Methods: The drugs that can interact and inhibit the misfolding or revert the misconformation of the protein can be useful in the treatment of ALS. Monomer apo SOD1-WT and MBR SOD1 mutants (H81A, H49R) were docked with the only two FDA-approved drugs for ALS that are edaravone and riluzole to assess if the ALS patients carrying these particular protein aggregates will derive any therapeutic efficacy.
Results: The drugs were found to interact with both wild-type and mutant SOD1 at different positions and the type of interaction, degree of interaction and their binding energies were determined. SOD1-WT has hydrophobic interactions at V103, H110, and R115 and hydrogen bond at H110 with edaravone. SOD1-WT has hydrophobic interactions at T54, F64 and hydrogen bond at D52, T58 with riluzole. Both SOD1 mutants has a hydrogen bond at its H46 residue for both drugs. SOD1-H49R mutant has hydrophobic interactions at F45 with riluzole. SOD1-H81A mutant has hydrophobic interactions at F45 with edaravone.
Conclusion: Both the mutants L42A residue has a hydrophobic interaction with edaravone. Interaction of drugs with protein and its mutants may make it possible to restore the stability of SOD1 structure and attenuate disease progression in ALS patients carrying these mutations.
Downloads
References
Fil D, DeLoach A, Yadav S, Alkam D, MacNicol M, Singh A. Mutant profilin1 transgenic mice recapitulate cardinal features of motor neuron disease. Hum Mol Genet. 2017 Feb 15;26(4):686-701. doi: 10.1093/hmg/ddw429, PMID 28040732.
Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int. 2015;6:171. doi: 10.4103/2152-7806.169561, PMID 26629397.
Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014 Jan;17(1):17-23. doi: 10.1038/nn.3584, PMID 24369373.
Van Blitterswijk M, DeJesus Hernandez M, Rademakers R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? Curr Opin Neurol. 2012 Dec 1;25(6):689-700. doi: 10.1097/WCO.0b013e32835a3efb, PMID 23160421.
Abramzon Y, Johnson JO, Scholz SW, Taylor JP, Brunetti M, Calvo A. Valosin-containing protein (VCP) mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2012;33(9):2231.e1-6. doi: 10.1016/j.neurobiolaging.2012.04.005. PMID 22572540.
Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron. 2014 Oct 22;84(2):324-31. doi: 10.1016/j.neuron.2014.09.027, PMID 25374358.
Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997 Feb 1;18(2):327-38. doi: 10.1016/s0896-6273(00)80272-x, PMID 9052802.
Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 1995 Jan 31;92(3):689-93. doi: 10.1073/pnas.92.3.689, PMID 7846037.
Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA. 2009 Nov 3;106(44):18809-14. doi: 10.1073/pnas.0908767106, PMID 19833869.
Ingre C, Landers JE, Rizik N, Volk AE, Akimoto C, Birve A. A novel phosphorylation site mutation in profilin 1 was revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol Aging. 2013;34(6):1708.e1-6. doi: 10.1016/j.neurobiolaging.2012.10.009. PMID 23141414.
Smith BN, Vance C, Scotter EL, Troakes C, Wong CH, Topp S. Novel mutations support a role for profilin 1 in the pathogenesis of ALS. Neurobiol Aging. 2015;36(3):1602.e17-27. doi: 10.1016/j.neurobiolaging.2014.10.032. PMID 25499087.
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993 Mar;362(6415):59-62. doi: 10.1038/362059a0, PMID 8446170.
Chang LY, Slot JW, Geuze HJ, Crapo JD. Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes. J Cell Biol. 1988;107(6 Pt 1):2169-79. doi: 10.1083/jcb.107.6.2169, PMID 3058718.
Keller GA, Warner TG, Steimer KS, Hallewell RA. Cu, Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci USA. 1991 Aug 15;88(16):7381-5. doi: 10.1073/pnas.88.16.7381, PMID 1651504.
Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY. Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci USA. 1992 Nov 1;89(21):10405-9. doi: 10.1073/pnas.89.21.10405, PMID 1332049.
Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC. A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem. 2001 Oct 12;276(41):38084-9. doi: 10.1074/jbc.M105296200. PMID 11500508.
Reddi AR, Culotta VC. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell. 2013 Jan 17;152(1-2):224-35. doi: 10.1016/j.cell.2012.11.046, PMID 23332757.
Tsang CK, Liu Y, Thomas J, Zhang Y, Zheng XF. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resis-tance. Nat Commun. 2014 Mar 19;5(1):3446. doi: 10.1038/ncomms4446, PMID 24647101.
Wei JP, Srinivasan C, Han H, Valentine JS, Gralla EB. Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism. J Biol Chem. 2001 Nov 30;276(48):44798-803. doi: 10.1074/jbc.M104708200. PMID 11581253.
Beckman JS, Carson M, Smith CD, Koppenol WH. ALS, SOD and peroxynitrite. Nature. 1993 Aug;364(6438):584. doi: 10.1038/364584a0, PMID 8350919.
Tainer JA, Getzoff ED, Richardson JS, Richardson DC. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983 Nov;306(5940):284-7. doi: 10.1038/306284a0, PMID 6316150.
Saccon RA, Bunton Stasyshyn RK, Fisher EM, Fratta P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain. 2013 Aug 1;136(8):2342-58. doi: 10.1093/brain/awt097, PMID 23687121.
Culik RM, Sekhar A, Nagesh J, Deol H, Rumfeldt JAO, Meiering EM. Effects of maturation on the conformational free-energy landscape of SOD1. Proc Natl Acad Sci USA. 2018 Mar 13;115(11):E2546-55. doi: 10.1073/pnas.1721022115, PMID 29483249.
The UniProt Consortium. UniProt: the universal protein KnowledgeBase. Nucleic Acids Res. 2017;45(D1):D158-69. doi: 10.1093/nar/gkw1099, PMID 27899622.
Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH. The RCSB protein data bank: an integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017;45(D1):D271-81. doi: 10.1093/nar/gkw1000, PMID 27794042.
Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019;47(D1):D1038-43. doi: 10.1093/nar/gky1151. PMID 30445645.
Puthenveetil R, Vinogradova O. Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments. J Biol Chem. 2019 Nov 1;294(44):15914-31. doi: 10.1074/jbc.REV119.009178. PMID 31551353.
Parge HE, Hallewell RA, Tainer JA. Atomic structures of wild-type and thermostable mutant recombinant human Cu, Zn superoxide dismutase. Proc Natl Acad Sci USA. 1992 Jul 1;89(13):6109-13. doi: 10.1073/pnas.89.13.6109, PMID 1463506.
Lim L, Song J. SALS-linked WT-SOD1 adopts a highly similar helical conformation as FALS-causing L126Z-SOD1 in a membrane environment. Biochim Biophys Acta. 2016;1858(9):2223-30. doi: 10.1016/j.bbamem.2016.06.027. PMID 27378311.
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul 1;4(4):406-25. doi: 10.1093/oxford journals.molbev.a040454. PMID 3447015.
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985 Jul;39(4):783-91. doi: 10.1111/j.1558-5646.1985.tb00420.x. PMID 28561359.
Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. Inevolving genes and proteins. Academic Press; 1965 Jan 1. p. 97-166.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018 Jun;35(6):1547-9. doi: 10.1093/molbev/msy096, PMID 29722887.
Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014 Jan 16;10(1):e1003440. doi: 10.1371/journal.pcbi.1003440. PMID 24453961.
Seetharaman SV, Taylor AB, Holloway S, Hart PJ. Structures of mouse SOD1 and human/mouse SOD1 chimeras. Arch Biochem Biophys. 2010 Nov 15;503(2):183-90. doi: 10.1016/j.abb.2010.08.014, PMID 20727846.
Nordlund A, Leinartaitė L, Saraboji K, Aisenbrey C, Grobner G, Zetterstrom P. Functional features cause misfolding of the ALS-provoking enzyme SOD1. Proc Natl Acad Sci USA. 2009 Jun 16;106(24):9667-72. doi: 10.1073/pnas.0812046106, PMID 19497878.
Anderson RJ, Weng Z, Campbell RK, Jiang X. Main‐chain conformational tendencies of amino acids. Proteins. 2005 Sep 1;60(4):679-89. doi: 10.1002/prot.20530, PMID 16021632.
Doogue MP, Polasek TM. The ABCD of clinical pharmacokinetics. Ther Adv Drug Saf. 2013 Feb;4(1):5-7. doi: 10.1177/2042098612469335, PMID 25083246.
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3;7(1):42717. doi: 10.1038/srep42717, PMID 28256516.
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research. 2021 Jan 8;49(D1):D1388-95. https://doi.org/10.1093/nar/gkaa971, PMID 33151290.
Jaiswal MK. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Medicinal Research Reviews. 2019 Mar;39(2):733-48. https://doi.org/10.1002/med.21528, PMID 30101496.
Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein–ligand docking and virtual drug screening with the Auto-Dock suite. Nature Protocols. 2016 May;11(5):905-19. https://doi.org/10.1038/nprot.2016.051, PMID 27077332.
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Research. 2015 Jul 1;43(W1):W443-7. https://doi.org/10.1093/nar/gkv315, PMID 25873628.
Pal S, Tiwari A, Sharma K, Sharma SK. Does conserved domain SOD1 mutation has any role in ALS severity and therapeutic outcome? BMC Neuroscience. 2020 Dec;21(1):1-7. https://doi:42.org/10.1186/s12868-020-00591-3, PMID 33036560.
Strange RW, Yong CW, Smith W, Hasnain SS. Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu–Zn superoxide dismutase. Proceedings of the National Academy of Sciences USA. 2007 Jun 12;104(24):10040-4. https://doi.org/10.1073/pnas.0703857104.
Cohen NR, Zitzewitz JA, Bilsel O, Matthews CR. Nonnative structure in a peptide model of the unfolded state of superoxide dismutase 1 (SOD1): Iimplications for ALS-linked aggregation. Journal of Biological Chemistry. 2019 Sep 13;294(37):13708-17. https://doi.org/10.1074/jbc. PMID 31341015.
Hulisz D. Amyotrophic lateral sclerosis: Disease state overview. Am J Manag Care. 2018;24(15)Suppl:S320-6. PMID 30207670.
Banci L, Bertini I, Boca M, Girotto S, Martinelli M, Valentine JS, Vieru M. SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization. PloS ONE. 2008 Feb 27;3(2):e1677. https://doi.org/10.1371/journal. PMID 18301754.
McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A, Farley BJ, Schoch KM, Hoye ML, Shabsovich M, Sun L, Luo Y. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. The Journal of Clinical Investigation. 2018 Nov 1;128(8):3558-67. https://doi.org/10.1172/JCI99081, PMID 30010620.
de Araujo Brasil AA, de Carvalho MDC, Gerhardt E, Queiroz DD, Pereira MD, Outeiro TF. Characterization of the activity, aggregation, and toxicity of heterodimers of WT and ALS-associated mutant Sod1. Proceedings of the National Academy of Sciences USA. 2019 Dec 17;116(51):25991-6000. https://doi.org/10.1073/pnas.1902483116, PMID 31796595.
Forsberg K, Graffmo K, Pakkenberg B, Weber M, Nielsen M, Marklund S. Misfolded SOD1 inclusions in patients with mutations in C9orf72 and other ALS/FTD-associated genes. Journal of Neurology, Neurosurgery and Psychiatry. 2019 Aug 1;90(8):861-9. https://doi.org/10.1136/jnnp-2018-319386, PMID 30992335.
Boyd SD, Ullrich MS, Calvo JS, Behnia F, Meloni G, Winkler DD. Mutations in superoxide dismutase 1 (Sod1) linked to familial amyotrophic lateral sclerosis can disrupt high-affinity zinc-binding promoted by the copper chaperone for Sod1 (Ccs). Molecules. 2020 Jan;25(5):1086. https://doi.org/10.3390/molecules25051086, PMID 32121118.
Nagao C, Kuroi K, Wakabayashi T, Nakabayashi T. Pro-oxidant activity of an ALS-linked SOD1 mutant in Zn-deficient form. Molecules. 2020 Jan;25(16):3600. https://doi.org/10.3390/molecules25163600, PMID 32784718.
Kim J, Lee H, Lee JH, Kwon DY, Genovesio A, Fenistein D. Dimerization, oligomerization, and aggregation of human amyotrophic lateral sclero-sis copper/zinc superoxide dismutase 1 protein mutant forms in live cells. Journal of Biological Chemistry. 2014 May 23;289(21):15094-103. https://doi.org/10.1074/jbc, PMID 24692554.
Prudencio M, Borchelt DR. Superoxide dismutase 1 encoding mutations linked to ALS adopts a spectrum of misfolded states. Molecular Neu-rodegeneration. 2011 Dec;6(1):1-9. https://doi:77.org/10.1186/1750-1326-6-77, PMID 22094223.
Borel F, Gernoux G, Cardozo B, Metterville JP, Toro Cabrera GC, Song L. Therapeutic rAAVrh10 mediated SOD1 silencing in adult SOD1(G93A) mice and nonhuman primates. Hum Gene Ther. 2016;27(1):19-31. doi: 10.1089/hum.2015.122. PMID 26710998.
Roberts BR, Tainer JA, Getzoff ED, Malencik DA, Anderson SR, Bomben VC, Meyers KR, Karplus PA, Beckman JS. Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS. Journal of Molecular Biology. 2007 Nov 2;373(4):877-90. doi: 10.1016/j.jmb.2007.07.043. PMID 17888947.
Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995 Jun 1;14(6):1105-16. https://doi.org/10.1016/0896-6273(95)90259-7.
Sadr AS, Eslahchi C, Ghassempour A, Kiaei M. In silico studies reveal structural deviations of mutant profilin-1 and interaction with riluzole and edaravone in amyotrophic lateral sclerosis. Scientific Reports. 2021 Mar 25;11(1):1-4. https://doi:6849.org/10.1038/s41598-021-86211-4, PMID 33767237.
Rothstein JD. Edaravone: a new drug approved for ALS. Cell. 2017 Nov 2;171(4):725. doi: 10.1016/j.cell.2017.10.011, PMID 29100067.
Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole study group. N Engl J Med. 1994 Mar 3;330(9):585-91, PMID 8302340.
Shefner J, Heiman Patterson T, Pioro EP, Wiedau‐Pazos M, Liu S, Zhang J, Agnese W, Apple S. Long‐term edaravone efficacy in amyotrophic lateral sclerosis: post‐hoc analyses of Study 19 (MCI186‐19). Muscle and Nerve. 2020 Feb;61(2):218-21. https://doi.org/10.1002/mus.26740, PMID 31621933.
Published
How to Cite
Issue
Section
Copyright (c) 2022 RADHIKA NAGRE, VAEESHNAVI BUWA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.