POTENTIAL OF SCORPION VENOM FOR THE TREATMENT OF VARIOUS DISEASES
DOI:
https://doi.org/10.22159/ijcr.2022v6i3.204Keywords:
Scorpion venom, Toxins, Cell channels, Disease treatment, Drug formationAbstract
The venom of various scorpion species finds significant therapeutic applications. It is rich in neurotoxins, enzymes, enzyme inhibitors, histamine, lipids and different salts from which peptides demonstrate a great potential against a variety of diseases. Many biological functions e. g., bradykinin potentiating, hemolytic, anti-cancer, anti-microbial, and anti-inflammatory potential are being regulated by non-disulfide-bonded peptides. Therefore, it is motivating to use these properties for the treatment of cancer, cardiovascular diseases, diabetes, AIDS, apoplexy, influenza H5N1, paralysis, epilepsy, malaria, measles, severe combined immunodeficiency, fever blisters and diabetes. Scorpion venom has shown the presence of 100,000 bioactive compounds but only 1 % of these have been purified, isolated and characterized by HPLC and mass spectroscopy etc. For the production of high-quality antivenom with specific antibodies, gentler electrical stimulation is a better method as compared to manual production. Recombinant DNA technology has facilitated the identification of new components. Some important medicinal compounds isolated from scorpion venom include HsTX1 (from Heterometrus spinnifer), mucroporin-M1 (from Lychas mucronatus), chlorotoxin and charybdotoxin (from Leiurus quinquestriatus hebraeus). B. leptochelys venom has shown the presence of at least 148 components. Six novel long-chain peptides were isolated from the scorpion Buthus martensi Karsch venom. Crude venom of L. Abdullah bayrami displays a proliferative effect on MCF-7 cells and also shows antimicrobial potential. A new toxin derived from the venom of Liocheles waigiensis [U1-liotoxin-Lw1a (U1-LITX-Lw1a)] displays significant insecticidal action. The computational studies may play an important role while developing ion channel drugs from venom peptides.
Downloads
References
Ahn MY, Ryu KS, Lee YW, Kim YS. Cytotoxicity and L-amino acid oxidase activity of crude insect drugs. Arch Pharm Res. 2000;23(5):477-81. doi: 10.1007/BF02976576, PMID 11059827.
Petricevich VL. Effect of tityus serrulatus venom on cytokine production and the activity of murine macrophages. Mediators Inflamm. 2002;11(1):23-31. doi: 10.1080/09629350210308, PMID 11926592.
KV R. Study the assessment of poisoning cases in a rural tertiary care teaching hospital by a clinical pharmacist. Asian J Pharm Clin Res. 2012;5(2):138-41.
Ibrahim F, Sahlan M, Ginting MJ, Pratami DK, Hermansyah H, Wijanarko A. Isolation of protein from the spine venom of Pterois volitans found in the Indonesian ocean, using a heating process, for anticancer, antiretroviral, antibacterial, and antioxidant assays. Int J App Pharm. 2021;13Special Issue 2:53-8. doi: 10.22159/ijap.2021.v13s2.10.
Rajan SS, Subramanian P, Merlin JPJ. Snake venom-derived peptides as prospective pharmacological tools: recent trends. Int J Curr Pharm Sci. 2022;14(1):1-14. doi: 10.22159/ijcpr.2022v14i1.44106.
Bharadwa PV, Gogari PK. Possible action mechanism of bio-molecules extracted from snake venom as antivirals to inactivate novel corona virus. Crit Rev. 2020;10:589-91.
Sarkar S, Chakraverty R, Datta S, Ghosh A, Sarkar S. In vitro assays for neutralization of snake venom using herbal drugs: A creative. J Pharm Res. 2015;1(4):156-69.
Das Gupta SD, Debnath A, Saha A, Giri B, Tripathi G, Vedasiromoni JR. Indian black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leuk Res. 2007;31(6):817-25. doi: 10.1016/j.leukres.2006.06.004, PMID 16876244.
Chippaux JP, Goyffon M. Epidemiology of scorpionism: a global appraisal. Acta Trop. 2008;107(2):71-9. doi: 10.1016/j.actatropica.2008.05.021, PMID 18579104.
Al Asmari AK, Al Zahrani AG, Al Jowhary S, Arshaduddin M. Clinical aspects and frequency of scorpion stings in the Riyadh region of Saudi Arabia. Saudi Med J. 2012;33(8):852-8. PMID 22886117.
Al Asmari AK, Khan HA, Manthiri RA, Al Yahya KM, Al Otaibi KE. Effects of Echis pyramidum snake venom on hepatic and renal antioxidant enzymes and lipid peroxidation in rats. J Biochem Mol Toxicol. 2014;28(9):407-12. doi: 10.1002/jbt.21578, PMID 24888330.
Ozkan O, Filazi A. The determination of acute lethal dose-50 (LD50) levels of venom in mice, was obtained by different methods from scorpions, Androctonus crassicauda (Oliver 1807). Acta Parasitol Turc. 2004;28(1):50-3.
Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA. Scorpion venom: detriments and benefits. Biomedicines. 2020;8(5):118. doi: 10.3390/biomedicines8050118, PMID 32408604.
Al-Asmari AK, Riyasdeen A, Islam M. Scorpion venom causes upregulation of p53 and downregulation of Bcl-xL and BID protein expression by modulating signaling proteins ERK1/2 and STAT3, and DNA damage in breast and colorectal cancer cell lines. Integr Cancer Ther. 2018;17(2):271-81. doi: 10.1177/1534735417704949, PMID 28438053.
El-Ghlban S, Kasai T, Shigehiro T, Yin HX, Sekhar S, Ida M. Chlorotoxin-Fc fusion inhibits the release of MMP-2 from pancreatic cancer cells. BioMed Res Int. 2014;2014:152659. doi: 10.1155/2014/152659, PMID 24511528.
Andreotti N, Jouirou B, Mouth L, Sabatier J. Comprehensive natural products II. Amsterdam: Elsevier; 2010.
Diaz Garcia A, Morier Diaz L, Frion Herrera Y, Rodriguez Sanchez H, Caballero-Lorenzo Y, Mendoza-Llanes D. In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines. J Venom Res. 2013;4:5-12. PMID 23946884.
Gomes A, Bhattacharjee P, Mishra R, Biswas AK, Dasgupta SC, Giri B. Anticancer potential of animal venoms and toxins. Indian J Exp Biol. 2010;48(2):93-103. PMID 20455317.
Petricevich VL, Navarro LB, Possani LD. Therapeutic use of scorpion venom. Mol ASp Inflamm. 2013;9:209-31.
Oukkache N, Chgoury F, Lalaoui M, Cano AA, Ghalim N. Comparison between two methods of scorpion venom milking in Morocco. J Venom Anim Toxins Incl Trop Dis. 2013;19(1):5. doi: 10.1186/1678-9199-19-5, PMID 23849043.
Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon. 2015;93:125-35. doi: 10.1016/j.toxicon.2014.11.233, PMID 25432067.
Santibanez Lopez CE, Possani LD. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: insights on their classification and evolution. Toxicon. 2015;107(B):317-26. doi: 10.1016/j.toxicon.2015.06.029, PMID 26187850.
Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics. 2009;10(1):290. doi: 10.1186/1471-2164-10-290, PMID 19570192.
Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a review. Peptides. 2014;51:35-45. doi: 10.1016/j.peptides.2013.10.021, PMID 24184590.
Possani LD, Merino E, Corona M, Bolivar F, Becerril B. Peptides and genes coding for scorpion toxins that affect ion channels. Biochimie. 2000;82(9-10):861-8. doi: 10.1016/s0300-9084(00)01167-6, PMID 11086216.
Cestele S, Catterall WA. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 2000;82(9-10):883-92. doi: 10.1016/s0300-9084(00)01174-3, PMID 11086218.
Quintero Hernandez V, Jimenez Vargas JM, Gurrola GB, Valdivia HH, Possani LD. Scorpion venom components that affect ion-channels function. Toxicon. 2013;76:328-42. doi: 10.1016/j.toxicon.2013.07.012, PMID 23891887.
Fry BG. From genome to ”venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005;15(3):403-20. doi: 10.1101/gr.3228405, PMID 15741511.
Chen R, Chung SH. Computational studies of venom peptides targeting potassium channels. Toxins. 2015;7(12):5194-211. doi: 10.3390/toxins7124877, PMID 26633507.
Bagal SK, Brown AD, Cox PJ, Omoto K, Owen RM, Pryde DC. Ion channels as therapeutic targets: a drug discovery perspective. J Med Chem. 2013;56(3):593-624. doi: 10.1021/jm3011433, PMID 23121096.
Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD. K+channels as targets for specific immunomodulation. Trends Pharmacol Sci. 2004;25(5):280-9. doi: 10.1016/j.tips.2004.03.010, PMID 15120495.
Knapp O, McArthur JR, Adams DJ. Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins. 2012;4(11):1236-60. doi: 10.3390/toxins4111236, PMID 23202314.
Shi J, He HQ, Zhao R, Duan YH, Chen J, Chen Y. Inhibition of martentoxin on neuronal BK channel subtype (alpha+beta4): implications for a novel interaction model. Biophys J. 2008;94(9):3706-13. doi: 10.1529/biophysj.107.122150, PMID 18199674.
Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev. 2000;52(4):557-94. PMID 11121510.
Tenenholz TC, Klenk KC, Matteson DR, Blaustein MP, Weber DJ. Structural determinants of scorpion toxin affinity: the charybdotoxin (alpha-KTX) family of K(+)-channel blocking peptides. Rev Physiol Biochem Pharmacol. 2000;140:135-85. doi: 10.1007/BFb0035552, PMID 10857399.
Holaday Jr SK, Martin BM, Fletcher Jr PL, Krishna NR. NMR solution structure of butantoxin. Arch Biochem Biophys. 2000;379(1):18-27. doi: 10.1006/abbi.2000.1858, PMID 10864437.
Cao Z, Di Z, Wu Y, Li W. Overview of scorpion species from China and their toxins. Toxins. 2014;6(3):796-815. doi: 10.3390/toxins6030796, PMID 24577583.
Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family. Genome Biol. 2003;4(3):207. doi: 10.1186/gb-2003-4-3-207, PMID 12620097.
Mander L, Liu HW. Comprehensive natural products II: Chemistry and biology. Elsevier; 2010.
Matsushita N, Miyashita M, Sakai A, Nakagawa Y, Miyagawa H. Purification and characterization of a novel short-chain insecticidal toxin with two disulfide bridges from the venom of the scorpion Liocheles australasiae. Toxicon. 2007;50(6):861-7. doi: 10.1016/j.toxicon.2007.06.014, PMID 17681581.
Ding J, Chua PJ, Bay BH, Gopalakrishnakone P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Exp Biol Med (Maywood). 2014;239(4):387-93. doi: 10.1177/1535370213513991, PMID 24599885.
Becchetti A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol. 2011;301(2):C255-65. doi: 10.1152/ajpcell.00047.2011, PMID 21430288.
Ahluwalia S, Shah N. Animal venom for treating breast cancer. Int J Pharm Pharm Sci. 2014;6(9):24-30.
Ghosh A, Roy R, Nandi M, Mukhopadhyay A. Scorpion venom–toxins that aid in drug development: a review. Int J Pept Res Ther. 2019;25(1):27-37. doi: 10.1007/s10989-018-9721-x, PMID 32214927.
Lorenzo LD. Cancer pain management with a venom of blue scorpion endemic in cuba, called rhopalurus junceus ”Escozul”. Open Cancer J. 2012;5(1):1-2. doi: 10.2174/1874079001205010001.
D’Suze G, Rosales A, Salazar V, Sevcik C. Apoptogenic peptides from tityus discrepans scorpion venom acting against the SKBR3 breast cancer cell line. Toxicon. 2010;56(8):1497-505. doi: 10.1016/j.toxicon.2010.09.008, PMID 20888852.
Mishal R, Tahir HM, Zafar K, Arshad M. Anticancerous applications of scorpion venom. Int J Biol Pharm Res. 2013;4:356-60.
Zargan J, Umar S, Sajad M, Naime M, Ali S, Khan HA. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicol In Vitro. 2011;25(8):1748-56. doi: 10.1016/j.tiv.2011.09.002, PMID 21945044.
Chaisakul J, Hodgson WC, Kuruppu S, Prasongsook N. Effects of animal venoms and toxins on hallmarks of cancer. J Cancer. 2016;7(11):1571-8. doi: 10.7150/jca.15309, PMID 27471574.
Lyons SA, O’Neal J, Sontheimer H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia. 2002;39(2):162-73. doi: 10.1002/glia.10083, PMID 12112367.
Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC. Tumor paint: a chlorotoxin: Cy5. 5 bioconjugates for intraoperative visualization of cancer foci. Cancer Res. 2007;67(14):6882-8. doi: 10.1158/0008-5472.CAN-06-3948, PMID 17638899.
Feng L, Gao R, Gopalakrishnakone P. Isolation and characterization of a hyaluronidase from the venom of Chinese red scorpion Buthus martensi. Comp Biochem Physiol C Toxicol Pharmacol. 2008;148(3):250-7. doi: 10.1016/j.cbpc.2008.06.003, PMID 18611448.
Sariego J. Breast cancer in the young patient. Am Surg. 2010;76(12):1397-400. doi: 10.1177/000313481007601226, PMID 21265355.
Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872-7. doi: 10.1126/science.272.5263.872, PMID 8629022.
Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996;381(6584):661-6. doi: 10.1038/381661a0, PMID 8649511.
Chen Y, Cao L, Zhong M, Zhang Y, Han C, Li Q. Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PLOS ONE. 2012;7(4):e34947. doi: 10.1371/journal.pone.0034947, PMID 22536342.
Gopinath SC, Hayashi K, Kumar PK. Aptamer binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J Virol. 2012;86(12):6732-44. doi: 10.1128/JVI.00377-12, PMID 22514343.
Hill JM, Gebhardt BM, Wen R, Bouterie AM, Thompson HW, O’Callaghan RJ. Quantitation of herpes simplex virus type 1 DNA and latency-associated transcripts in rabbit trigeminal ganglia demonstrates a stable reservoir of viral nucleic acids during latency. J Virol. 1996;70(5):3137-41. doi: 10.1128/JVI.70.5.3137-3141.1996, PMID 8627793.
Hong W, Li T, Song Y, Zhang R, Zeng Z, Han S. Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral Res. 2014;102:1-10. doi: 10.1016/j.antiviral.2013.11.013, PMID 24315793.
van Soest H, Renooij W, van Erpecum KJ. Clinical and basal aspects of anemia during antiviral therapy for hepatitis C. Ann Hepatol. 2009;8(4):316-24. doi: 10.1016/S1665-2681(19)31744-2, PMID 20009130.
Sleeman K, Stein DA, Tamin A, Reddish M, Iversen PL, Rota PA. Inhibition of measles virus infections in cell cultures by peptide-conjugated morpholino oligomers. Virus Res. 2009;140(1-2):49-56. doi: 10.1016/j.virusres.2008.10.018, PMID 19059443.
Dai C, Ma Y, Zhao Z, Zhao R, Wang Q, Wu Y. Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrob Agents Chemother. 2008;52(11):3967-72. doi: 10.1128/AAC.00542-08, PMID 18779362.
Yan R, Zhao Z, He Y, Wu L, Cai D, Hong W. A new natural α-helical peptide from the venom of the heteromerous scorpion petersii kills HCV. Peptides. 2011;32(1):11-9. doi: 10.1016/j.peptides.2010.10.008, PMID 20950663.
Li Q, Zhao Z, Zhou D, Chen Y, Hong W, Cao L. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides. 2011;32(7):1518-25. doi: 10.1016/j.peptides.2011.05.015, PMID 21620914.
Lu X, Lu D, Scully MF, Kakkar VV. Integrins in drug targeting-RGD templates in toxins. Curr Pharm Des. 2006;12(22):2749-69. doi: 10.2174/138161206777947713, PMID 16918409.
McLane MA, Joerger T, Mahmoud A. Disintegrins in health and disease. Front Biosci. 2008;13(1):6617-37. doi: 10.2741/3177, PMID 18508683.
Cheong A, Li J, Sukumar P, Kumar B, Zeng F, Riches K. Potent suppression of vascular smooth muscle cell migration and human neointimal hyperplasia by KV1. 3 Channel blockers. Cardiovasc Res. 2011;89(2):282-9. doi: 10.1093/cvr/cvq305, PMID 20884640.
Xie J, Herbert TP. The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic β-cell mass: implications in the development of type-2 diabetes. Cell Mol Life Sci. 2012;69(8):1289-304. doi: 10.1007/s00018-011-0874-4, PMID 22068611.
Raza M, Shaheen F, Choudhary MI, Sombati S, Rafiq A, Suria A. Anticonvulsant activities of ethanolic extract and aqueous fraction isolated from Delphinium denudatum. J Ethnopharmacol. 2001;78(1):73-8. doi: 10.1016/s0378-8741(01)00327-0, PMID 11585691.
Villetti G, Bregola G, Bassani F, Bergamaschi M, Rondelli I, Pietra C. Preclinical evaluation of CHF3381 as a novel antiepileptic agent. Neuropharmacology. 2001;40(7):866-78. doi: 10.1016/s0028-3908(01)00026-0, PMID 11378157.
Tobassum S, Tahir HM, Arshad M, Zahid MT, Ali S, Ahsan MM. Nature and applications of scorpion venom: an overview. Toxin Rev. 2020;39(3):214-25. doi: 10.1080/15569543.2018.1530681.
Ramirez KL, Jimenez Vargas JM. Scorpine-like peptides. Single Cell Biol. 2016;5(2). doi: 10.4172/2168-9431.1000138.
Xu J, Zhang X, Guo Z, Yan J, Yu L, Li X. Orthogonal separation and identification of long-chain peptides from the scorpion Buthus martensi Karsch venom by using two-dimensional mixed-mode reversed phase-reversed phase chromatography coupled to tandem mass spectrometry. Analyst. 2013;138(6):1835-43. doi: 10.1039/c2an36704a, PMID 23373063.
Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+‐channels. Eur J Biochem. 1999;264(2):287-300. doi: 10.1046/j.1432-1327.1999.00625.x, PMID 10491073.
CN104193813A C. Sep purif method scorpion venom polypeptide use thereof; 2014.
Cordeiro FA, Amorim FG, Anjolette FA, Arantes EC. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. J Venom Anim Toxins Incl Trop Dis. 2015;21:24. doi: 10.1186/s40409-015-0028-5, PMID 26273285.
Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. J Toxicol. 2013;2013:958797. doi: 10.1155/2013/958797, PMID 23843786.
Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26(10):2738-58. doi: 10.1016/j.bmc.2017.09.029, PMID 28988749.
Oukkache N, Chgoury F, Lalaoui M, Cano AA, Ghalim N. Comparison between two methods of scorpion venom milking in Morocco. J Venom Anim Toxins Incl Trop Dis. 2013;19(1):5. doi: 10.1186/1678-9199-19-5, PMID 23849043.
Norton RS, Chandy KG. Venom-derived peptide inhibitors of voltage-gated potassium channels. Neuropharmacology. 2017;127:124-38. doi: 10.1016/j.neuropharm.2017.07.002, PMID 28689025.
Garcia Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. Journal of Biological Chemistry. 1993;268(25):18866-74. doi: 10.1016/S0021-9258(17)46707-X, PMID 8360176.
Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A. Blockade of the voltage-gated potassium channel Kv1. 3 inhibits immune responses in vivo. The Journal of Immunology. 1997;158(11):5120-8. PMID 9164927.
Lebrun B, Romi-Lebrun R, Martin Eauclaire MF, Yasuda A, Ishiguro M, Oyama Y. A four-disulfide-bridged toxin, with high affinity towards voltage-gated K+channels, isolated from Heterometrus spinnifer (Scorpionidae) venom. Biochemical J. 1997;328(1):321-7. doi: 10.1042/bj3280321, PMID 9359871.
Regaya I, Beeton C, Ferrat G, Andreotti N, Darbon H, De Waard M. Evidence for domain-specific recognition of SK and Kv channels by MTX and HsTx1 scorpion toxins. Journal of Biological Chemistry. 2004;279(53):55690-6. doi: 10.1074/jbc.M410055200, PMID 15498765.
Chandy KG, Norton RS. Peptide blockers of Kv1. 3 Channels in T cells as therapeutics for autoimmune disease. Current Opinion in Chem Biology. 2017;38:97-107. doi: 10.1016/j.cbpa.2017.02.015, PMID 28412597.
Yoshimoto Y, Miyashita M, Abdel Wahab M, Sarhan M, Nakagawa Y, Miyagawa H. Isolation and characterization of insecticidal toxins from the venom of the North African Scorpion, Buthacus leptochelys. Toxins. 2019;11(4):236. doi: 10.3390/toxins11040236, PMID 31027216.
Erdeş E, Dogan TS, Coşar I, Danışman T, Kunt KB, Seker T. Characterization of Leiurus abdullahbayrami (Scorpiones: Buthidae) venom: peptide profile, cytotoxicity and antimicrobial activity. Journal of Venom Anim Toxins Incl Trop Dis. 2014;20(1):1-8:48. doi: 10.1186/1678-9199-20-48, PMID 25414725.
Smith JJ, Hill JM, Little MJ, Nicholson GM, King GF, Alewood PF. Unique scorpion toxin with a putative ancestral fold provides insight into the evolution of the inhibitor cystine knot motif. Proceedings of the National Academy of Sciences USA. 2011;108(26):10478-83. doi: 10.1073/pnas.1103501108, PMID 21670253.
Ji YH, Wang WX, Ye JG, He LL, Li YJ, Yan YP. Martentoxin, a novel K+‐channel‐blocking peptide: purification, cDNA and genomic cloning, and electrophysiological and pharmacological characterization. Journal of Neurochemistry. 2003;84(2):325-35. doi: 10.1046/j.1471-4159.2003.01516.x, PMID 12558995.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Shabbir Hussain
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.