

MICROWAVE-ASSISTED SYNTHESIS OF SOME QUINOLINE ALKALOIDS: MONTONINE, 4-METHOXYQUINOLINE-2(1H)-ONE AND ITS ANALOGUES

VETRIVEL NADARAJ¹ & SENNIAPPAN THAMARAI SELVI^{*2}

¹Department of Chemistry, Tamilnadu College of Engineering, Coimbatore 641659, Tamil Nadu, India, ²Department of Chemistry, L.R.G. Govt. Arts College for Women's, Tirupur, Tamilnadu, India, Email: thamaraimohan@yahoo.co.in

Received: 2 Aug 2011, Revised and Accepted: 11 Sep 2011

ABSTRACT

The microwave synthesis of quinoline alkaloid *montonine* **2a** and its analogues **2b-e** was achieved in 6-8 min by methoxydechlorination of 2,4-dichloroquinolines **1a-e** using TBAB as phase transfer catalyst. Selective hydrolysis of **2a-e** by sodium acetate/acetic acid afforded 4-methoxyquinolin-2(1H)-one **3a** and its derivatives including natural alkaloid *edulitine*.

Keywords: Edulitine, Quinolines, Alkaloids, Phase transfer catalyst, Microwave.

INTRODUCTION

A considerable number of medicinally important quinoline alkaloids have been isolated from the *Rutaceae* family of plants.¹ Representative examples of some simple quinoline alkaloids include 2,4-dimethoxyquinoline, 4-methoxyquinolin-2(1H)-one and edulitine. These compound's plant sources have been shown to exhibit a variety of biological properties including antibacterial,² antifungal,³ antiviral,⁴ anti-protozoal⁵ and anti-platelet aggregation⁶ activities. Also these compounds are found to be key intermediates in the synthesis of several furoquinoline and pyranoquinoline type heterocycles⁷⁻⁹. Dictamine group of alkaloids were efficiently prepared¹⁰ from 2,4-dimethoxyquinolines by organolithiation and wittig reaction. Recently, 4-methoxyquinolin-2(1H)-one was used for the synthesis of atanine¹¹ and anticancerous indolo[2,3-*b*]quinoline derivatives¹².

In recent years, there is an increasing interest in the use of microwave-induced rate acceleration technology¹³⁻¹⁶ in organic synthesis in view of the mild, clean, convenient, greater selectivity, easier workup, spontaneity of the reaction process in comparison to the conventional solution phase reactions and the associated ease of manipulation. It is of note that this technique offers an environmentally friendly process of organic synthesis^{17,18}.

Phase Transfer Catalysis (PTC) a condition^{19,20} in the absence of organic solvent offers an improved technique, under which several organic syntheses were achieved. Hence, by coupling microwave technology and solvent-free solid-liquid PTC conditions have become an efficient methodology to carry out organic reactions with substantial improvements in terms of reaction conditions and simplicity in operating procedures. Herein we report a new and efficient microwave-assisted solvent-free synthesis of 2,4-dimethoxyquinolines and 4-methoxyquinolin-2(1H)-ones under PTC condition.

MATERIALS AND METHOD

Melting points (mp) were determined using Boetieus micro heating table and are uncorrected. IR (KBr, cm⁻¹) spectra were obtained on Shimadzu-8201 spectrophotometer. ¹H NMR spectra were recorded on Bruker AMX-400 (400 MHz) spectrometer using TMS as an internal reference (Chemical shifts in δ , ppm). Elemental analyses were performed on Perkin Elmer CHN-analyzer. Mass spectra were recorded on Shimadzu GCMS-QP5050A (70 ev) mass spectrometer. For microwave irradiation a Kenstar (OM-20ESP, 2450 MHz) domestic microwave oven was used.

General procedure for the synthesis of 2, 4-dimethoxyquinolines (2a-e)

2,4-Dichloroquinoline **1a-e** (1 mmol), tetrabutyl ammonium bromide (TBAB, 200 mg), sodium methoxide (108 mg) and few drops of water were mixed well and irradiated at 160 W under microwave condition for the specified time (Table 1). After

completion of the reaction, the mixture was poured into ice, the formed precipitate was filtered, washed with sufficient water and then recrystallised from hexane-ethyl acetate.

2,4-dimethoxyquinoline (2a): IR (KBr): ν =1622, 1580 cm⁻¹; ¹H NMR (DMSO-d₆): δ =7.98 (d, J = 8.3 Hz, 1H; C₅-H), 7.71 (d, 1H; C₈-H), 7.63 (t, 1H; C₇-H), 7.37 (t, 1H; C₆-H), 6.45 (s, 1H; C₃-H), 3.99 (s, 3H; C₂-OCH₃), 3.94 (s, 3H; C₄-OCH₃); ¹³C NMR (DMSO-d₆): δ =163.9, 163.4, 147.1, 130.0, 126.9, 123.3, 121.8, 119.0, 90.7, 55.7, 53.4. MS *m/z*: 189 (100 %, M⁺) 188 (93%, M⁺-H).

6-Methyl-2,4-dimethoxyquinoline (2b): IR (KBr): ν =1625, 1580 cm⁻¹; ¹H NMR (DMSO-d₆): δ =8.04 (s, 1H; C₅-H), 7.78 (d, 1H; C₈-H), 7.60 (d, 1H; C₇-H), 6.38 (s, 1H; C₃-H), 4.02 (s, 3H; C₂-OCH₃), 3.95 (s, 3H; C₄-OCH₃), 2.47 (s, 3H; C₆-CH₃); MS *m/z*: 203 (100 %, M⁺).

8-Methyl-2,4-dimethoxyquinoline (2c): IR (KBr): ν =1620, 1585 cm⁻¹; ¹H NMR (DMSO-d₆): δ =7.93 (d, J = 8.2 Hz, 1H; C₅-H), 7.64 (d, 1H; C₇-H), 7.45 (t, 1H; C₆-H), 6.41 (s, 1H; C₃-H), 4.05 (s, 3H; C₂-OCH₃), 4.00 (s, 3H; C₄-OCH₃), 2.60 (s, 3H; C₈-CH₃); MS *m/z*: 203 (100 %, M⁺).

6-Methoxy-2,4-dimethoxyquinoline (2d): IR (KBr): ν =1620, 1578 cm⁻¹; ¹H NMR (DMSO-d₆): δ =7.52 (s, 1H; C₅-H), 7.25 (d, 1H; C₈-H), 7.13 (d, 1H; C₇-H), 6.45 (s, 1H; C₃-H), 4.01 (s, 3H; C₂-OCH₃), 3.96 (s, 3H; C₄-OCH₃), 3.92 (s, 3H; C₆-OCH₃); MS *m/z*: 219 (100 %, M⁺).

8-Methoxy-2,4-dimethoxyquinoline (2e): IR (KBr): ν =1625, 1580 cm⁻¹; ¹H NMR (DMSO-d₆): δ =7.54 (d, J = 8.2 Hz, 1H; C₅-H), 7.27 (t, 1H; C₆-H), 7.14 (d, 1H; C₇-H), 6.46 (s, 1H; C₃-H), 3.97 (s, 3H; C₂-OCH₃), 3.94 (s, 3H; C₄-OCH₃), 3.90 (s, 3H; C₈-OCH₃); ¹³C NMR (DMSO-d₆): δ =164.1, 163.8, 150.1, 149.2, 132.2, 123.6, 121.8, 119.4, 91.2, 55.6, 54.5, 53.7; MS *m/z*: 219 (100 %, M⁺).

General procedure for the synthesis of 4-methoxyquinolin-2(1H)-ones (3a-e)

2,4-Dimethoxyquinoline (1 mmol) acetic acid (10 mL) and sodium acetate (8 g) were heated in a microwave oven at 160 W for the specified time (Table 2). After the reaction, the mixture was added to ice. The precipitated solid was filtered, dried and recrystallised from ethyl acetate.

4-Methoxyquinolin-2(1H)-one (3a): IR (KBr): ν =3100-3200 (NH), 1668 (C=O) cm⁻¹; ¹H NMR (DMSO-d₆): δ =11.34 (s, 1H; NH), 7.85 (d, J = 8.1 Hz, 1H; C₅-H), 7.61 (t, 1H; C₇-H), 7.37 (d, 1H; C₈-H), 7.29 (t, 1H; C₆-H), 5.87 (s, 1H; C₃-H), 3.91 (s, 3H; C₂-OCH₃); ¹³C NMR (DMSO-d₆): δ =166.4, 165.0, 138.7, 131.5, 123.1, 122.4, 115.1, 114.6, 96.2, 55.5; MS *m/z*: 175 (100 %, M⁺), 132 (63%, M⁺-CONH).

6-Methyl-4-methoxyquinolin-2(1H)-one (3b): IR (KBr): ν =3150-3310 (NH), 1664 (C=O) cm⁻¹; ¹H NMR (DMSO-d₆): δ =10.35 (s, 1H; NH), 7.90 (s, 1H; C₅-H), 7.52 (d, 1H; C₈-H), 7.32 (d, 1H; C₇-H), 6.01 (s, 1H; C₆-H), 3.93 (s, 3H; C₂-OCH₃), 2.52 (s, 3H; C₆-CH₃); MS *m/z*: 189 (100 %, M⁺).

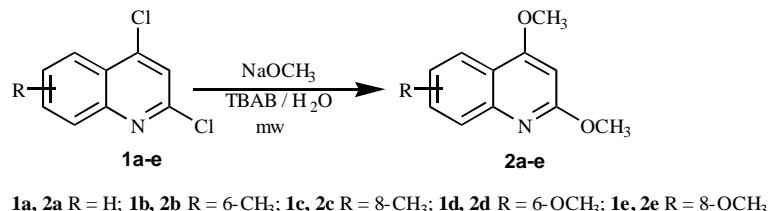
8-Methyl-4-methoxyquinolin-2(1H)-one (3c): IR (KBr): ν =3200-3300 (NH), 1665 (C=O) cm^{-1} ; ^1H NMR (DMSO-d₆): δ =10.46 (s, 1H, NH), 7.83 (d, J =8.2 Hz, 1H; C₅-H), 7.63 (d, 1H; C₇-H), 7.31 (t, 1H; C₆-H), 6.03 (s, 1H; C₃-H), 3.92 (s, 3H; C₄-OCH₃), 2.49 (s, 3H; C₈-CH₃); MS m/z : 189 (100 %, M⁺).

6-Methoxy-4-methoxyquinolin-2(1H)-one (3d): IR (KBr): ν =3200-3300 (NH), 1662 (C=O) cm^{-1} ; ^1H NMR (DMSO-d₆): δ =10.72 (s, 1H; NH), 7.58 (s, 1H; C₅-H), 7.52 (d, 1H; C₆-H), 7.15 (d, 1H; C₇-H),

5.88 (s, 1H; C₃-H), 3.90 (s, 3H; C₆-OCH₃), 3.94 (s, 3H; C₄-OCH₃); MS m/z : 205 (100 %, M⁺).

8-Methoxy-4-methoxyquinolin-2(1H)-one (3e): IR (KBr): ν =3210-3300 (NH), 1668 (C=O) cm^{-1} ; ^1H NMR (DMSO-d₆): δ =10.35 (s, 1H; NH), 7.35 (d, J =8.1 Hz, 1H; C₅-H), 7.08-7.15 (m, 2H; C₆-H & C₇-H), 5.89 (s, 1H; C₃-H), 3.90 (s, 3H; C₄-OCH₃), 3.87 (s, 3H; C₈-OCH₃); ^{13}C NMR (DMSO-d₆): δ =166.5, 164.8, 149.8, 139.2, 132.3, 123.4, 115.2, 114.7, 96.5, 55.7, 54.3; MS m/z : 205 (100 %, M⁺).

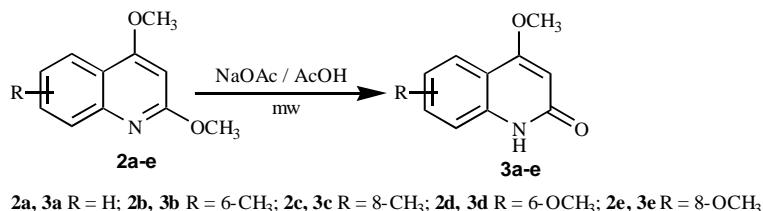
Table 1: Physical data of Compound 2a-e & 3a-e


Compound	Reaction Time (min)	Yield (%)	mp °C	Compound	Reaction Time (min)	Yield (%)	mp °C
2a	6	92	79-80	3a	5	91	248-249
2b	7	91	55-56	3b	4	94	235-237
2c	8	90	45-47	3c	5	89	248-249
2d	4	86	78-80	3d	6	90	220-223
2e	8	87	152-154	3e	6	82	240-242

RESULTS AND DISCUSSION

2,4-Dimethoxyquinoline **2a** is the proposed structure for montanine, isolated from *Ruta Montana*²¹ Before its isolation as natural product, the synthesis was reported. The synthetic method generally involves O-O-dialkylation of 4-hydroxyquinolin-2(1H)-one using diazomethane in methanol²² or methyl iodide, dimethyl sulphate and potassium hydroxide in acetone²³. Recent report of the synthesis of 2,4-dimethoxyquinolines from 4-hydroxy quinolin-2(1H)-ones involves treatment with methyl iodide in presence of AgCO₃ as catalyst under Argon atmosphere for 3 days.

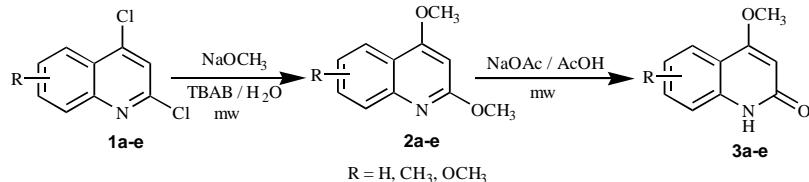
In another methodology, 2,4-dimethoxyquinolines were obtained¹⁶ by treating 2,4-dichloroquinolines with sodium methoxide in refluxing methanol for 20-25 hr. The process is slow; the overall yield of the transformation was only about 45% and shorter reaction times led to isolation of 2-methoxy-4-haloquinolines along with **2a**.


Our preliminary reaction centered on the methoxylation of 2,4-dichloroquinolines **1**. When **1a** was irradiated with sodium methoxide in methanol for 20 min at 160 W under microwave, mixture of products was recovered. Substitution at C-2 position is known to be kinetically favored and the second substitution is slowed considerably by the methoxy group at C-2 making bi-substitution difficult to drive the reaction to completion. Therefore, the same reaction was then tried out in solid sodium methoxide, Phase Transfer Catalyst (PTC) such as Tetra Butyl Ammonium Bromide (TBAB) and water under microwave condition. Gratifyingly, this reaction led to methoxylation of **1a** and gave 2,4-dimethoxyquinoline **2a** as the exclusive product in 92% yield (mp. 79-80°C; Lit. mp. 80-81°C) (Scheme 1). The use of phase transfer catalyst reduced the reaction time from 25 hr to just 6 min, and application of this methodology is further proved by the synthesis of derivatives of 2,4-dimethoxyquinoline in very good yield (Scheme 1; Table 1).

Scheme 1

4-Methoxyquinolin-2(1H)-one and related compounds like edulinine are natural alkaloids found rich in *Zanthoxylum* species. Generally 4-methoxyquinolin-2(1H)-one is obtained from 2,4-dimethoxyquinoline by refluxing with hydrochloric acid^{7a} or acetic acid. Recently,^{7e} 4-methoxyquinolin-2(1H)-one was obtained from 2,4-dimethoxyquinoline using HBr, THF/H₂O in 54% yield. In another report,⁸ **3a** was prepared from 4-hydroxyquinolin-2(1H)-one by selective methylation using dimethyl sulphate, K₂CO₃ and acetone. These processes suffer some disadvantages like longer reaction time, poor yield and use of hazardous chemicals. Here we thought of applying simple and solvent-free methodology for the synthesis of 4-methoxyquinolin-2(1H)-ones.

Thus, 2,4-dimethoxyquinoline **2a** was treated with 1 equivalent mixture of sodium acetate and acetic acid under microwave, which gave mixture of starting compounds and product. A range of conditions was investigated by changing the molar ratio of sodium acetate and acetic acid, in which 2 equivalent of sodium acetate and acetic acid successfully gave **3a** in 90% yield (Scheme 2). The structure of the **3a** was assigned on the basis of reported⁸ spectral (IR, ^1H NMR, ^{13}C NMR, Mass) and analytical (mp, mmp, CHN) data. Application of this methodology is further proved by the synthesis of derivatives of 4-methoxyquinolin-2(1H)-one (**3a-e**) in very good yield (Scheme 2; Table 1).



Scheme 2

Microwave-assisted synthesis of some quinoline alkaloids: *Montonine*, 4-methoxyquinolin-2(1*H*)-one and its analogues

The microwave synthesis of quinoline alkaloid montonine **2a** and its analogues **2b-e** was achieved by methoxydechlorination of 2,4-dichloroquinolines **1a-e** using TBAB as phase transfer catalyst.

V Nadaraj & S Thamarai Selvi*

Graphical Abstract

CONCLUSION

In conclusion, the PTC catalysed methoxylation reaction of 2,4-dichloroquinolines entails an efficient, very easy and solventless method for the synthesis of 2,4-dimethoxyquinolines, in very short reaction time, followed by demethoxylation which gave natural quinoline alkaloids like 4-methoxyquinolin-2(1*H*)-one, edulitine, and their synthetic analogs in good yields. The notable advantages of these procedure are: a) operational simplicity; b) faster reaction; c) high yield and purity of the product and d) avoid the usage of solvents. We believe this will provide a better and more practical alternative to the existing methodologies for the synthesis of the above alkaloids.

REFERENCES

- Michael JP. Quinoline, quinazoline and acridone alkaloids. *Nat Prod Rep* 2000;17:603-620.
- Towers GHN, Graham EA, Spenser ID, Abramowski Z. Phototoxic furanoquinolines of the *Rutaceae*. *Planta Med*. 1981;41:136-142.
- Biavatti MW, Vieira PC, deSilva MFDF, Fernandes JB, Victor SR, Pagnocca FC, Albuquerque S, Caracelli I, Zukerman-Schpector J. Biological Activity of Quinoline Alkaloids from *Raulinoa echinata* and X-ray Structure of Flindersiamine. *J Braz Chem Soc* 2002;13:66-70.
- McCormick JL, McTee TC, Cardellina JH, Boyd MR. HIV Inhibitory Natural Products: Quinoline Alkaloids from *Euodia roxburghiana*. *J Nat Prod* 1996;59: 469-471.
- Fournet A, Barrios AA, Munoz V, Hocquemiller R, Cave A, Bruneton J. 2-substituted quinoline alkaloids as potential antileishmanial drugs. *J Antimicrob Agents Chemother*. 1993;379:859-863.
- Chen IS, Tsai IW, Teng CM, Chen JJ, Chang YL, Ko FN, Lu MC, Pezzuto JM. Pyranoquinoline alkaloids from *Zanthoxylum simulans*. *Phytochemistry*. 1997; 46: 525-534.
- Narasimhan NS, Paradkar MV, Alurkar RH. Synthetic application of lithiation reactions-IV: Novel synthesis of linear furoquinoline alkaloids and a synthesis of edulitine. *Tetrahedron* 1971;27:1351-1356.
- Narasimhan NS, Mali. Synthetic application of lithiation reactions-VI: New synthesis of linear furoquinoline alkaloids. *Tetrahedron* 1974;30:4153-4157.
- Narasimhan NS, Bhagwat SP. Synthetic Application of Lithiation Reactions; Part XII. Synthesis of Angular and Linear 2-Oxo-2*H*-pyranoquinolines. *Synthesis* 1979; 903-905.
- Boyd DR, Sharma ND, Barr SA, Carroll JG, Mackerrecher D, Malone JF. Synthesis and absolute stereochemistry assignment of enantiopure dihydrofuro- and dihydropyrano-quinoline alkaloids. *J Chem Soc Prkln Trans 1* 2000: 3397-3405.
- Jones K, Roset X, Rossiter S, Whitfield P. Demethylation of 2,4-dimethoxyquinolines: the synthesis of atanine. *Org Biomol Chem* 2003; 1:4380-4383.
- Chen YL, Hung HM, Lu CM, Li KC, Tzeng CC. Synthesis and anticancer evaluation of certain indolo[2,3-*b*]quinoline derivatives. *Bioorg Med Chem* 2004;12:6539-6546.
- Caddick S. Microwave assisted organic reactions. *Tetrahedron* 1995;51: 10403-10432.
- Galema SA. Microwave chemistry. *Chem Soc Rev* 1997;26: 233-238.
- Roberts BA, Strauss CR. Toward Rapid, "Green", Predictable Microwave-Assisted Synthesis. *Acc Chem Res* 2005;38:653-661.
- Tu S, Zhang Y, Jia R, Jiang B, Zhang J, Ji S. A multi-component reaction for the synthesis of N-substituted furo[3,4-*b*]quinoline derivatives under microwave irradiation. *Tetrahedron Lett* 2006;47: 6521-6525.
- Thamarai Selvi S, Nadaraj V, Mohan S, Sasi R, Hema M. Solvent free microwave synthesis and evaluation of antimicrobial activity of pyrimido[4,5-*b*]- and pyrazolo[3,4-*b*]quinolines. *Bioorg Med Chem* 2006;14:3896-3903.
- Nadaraj V, Thamarai Selvi S, Sasi R. Microwave-assisted synthesis of quinoline alkaloids: 4-Methoxy-1-methyl-2-quinolinone and its analogs. *Arkivoc* 2006: 82-86.
- Rao GVP, Narasimha Reddy P, Thirupathi Reddy Y, Naveen Kumar V, Rajitha B. Synthesis of benzo[*b*]furan Mannich bases under solventless, PTSA/PTC catalytic condition assisted by microwave irradiation. *Indian J Chem* 2005; 44B:1109-1111.
- Loubry A, Luche JL. Hand Book of Phase Transfer catalysis. Sasson Y, Newmann R: Blackie Academic Professional and imprint of Chapman Hall London; 1997.
- Ulubelen A. A New Alkaloid, Montanine, from *Ruta Montana*. *J Nat Prod* 1990; 53:207-208.
- Arndt F, Ergener L, Kutlu O. *Chem Ind (London)* 1950:465.
- Reische J, Mester I. Über die Methylierung von 4-Hydroxy-2-chinolon. *Arch Pharm* 1980;313:751755.
- Morel AF, Lorghi EL, Selvero MM. *Synlett*, 2005, 2755.