

Research Article

SPECTROPHOTOMETRIC DETERMINATION OF SELENIUM IN WATER, SOIL SAMPLES USING 2-ACETYL-5-CHLORO THIOPHENE, PHENYLENEDIAMINE

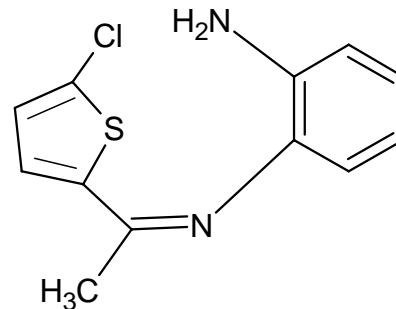
MD. FAKRUDDIN ALI AHMED^A, Y. LINGAPPA^B^A Professor, Department of Chemistry, FITAM, Kadapa-516001, Andhra Pradesh, Sri Venkateswara University, Tirupati - 517 502, Andhra Pradesh, India. Email: mfaahamed@gmail.com

Received: 15 March 2011, Revised and Accepted: 19 April 2011

Abstract: Analytical application of 2-acetyl-5-chlorothiophene, phenylenediamine (ACTPDA) is described for the direct non-extractive spectrophotometric determination of Selenium. The synthesized and characterized using IR and NMR spectral data. The reagents react with Selenium, in acidic medium (pH 6.0., sodium acetate-acetic acid buffer) to form yellow colored 1:2 (M: L) complexes. The colour reactions are instantaneous and absorbance values remain constant for over 24 h. The molar absorptivity and Sandell's sensitivity of ACTPDA methods are found to be $1.002 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$ 8.66 $\times 10^{-4} \mu\text{g cm}^{-2}$, 0.075 $\mu\text{g mL}^{-1}$ and 0.025 $\mu\text{g mL}^{-1}$ of Se^{IV} respectively. The systems obey Beer's law in the range of 2.5 -10 $\mu\text{g/ml}$ of Se^{IV} . Since ACTPDA method is more sensitive it was applied for the determination of selenium in water and soil samples.

Key words: Spectrophotometry, Selenium, 2-Acetyl-5-chlorothiophene, phenylenediamine, Water and soil, Samples.

INTRODUCTION


Selenium is one of the trace metal which plays an active role in many biological systems¹ as it has toxicological and physiological effects^{2,3}. It is an essential nutrient at trace level but toxic in excess⁴. Selenium is both highly toxic and an essential trace element for all living beings^{5,6} because selenium acts as a cofactor in cell membrane glutathione peroxidase and is important in cellular detoxification of peroxidase⁷. It is widely distributed innately in relatively small concentrations in rocks, plants, coal and other fossil fuels. In China selenium deficiency in soil is associated with Kashin Beck disease,^{8,9}.

When selenium is present in animal feeds at a concentration less than 0.1 mg L⁻¹, deficiency symptoms develop, but present higher concentration, exceeding 5 g L⁻¹, chronic selenosis occurs. Selenium compounds are widely used in paints, dyes, glass, electrical, rubber, insecticides, and many other industries. Some industrial and agricultural processes release selenium as a by-product and selenium from such sources has caused environmental disaster¹⁰.

The threshold limit¹¹ value for selenium compounds in air is 0.1-0.2 mg dm⁻³; in water it is 4.0 ppm. The toxicity, availability and environmental mobility of selenium are very much dependent on its chemical form¹². Selenium can occur in different oxidation state in organic and inorganic compounds. In many environmental matrixes, e.g. natural water and soils, the predominant oxidation state of selenium are Se(IV) and Se(VI). Precise knowledge of the amount of selenium and its compounds present in a system is therefore required for accurate assessment of the environmental and biological impact of selenium. This has resulted in an increasing need for analytical methods suitable for the determination of selenium at trace levels. Selenium enters into natural water through seepage from seleniferous soil and industrial waste. Water drained from such soil causes severe environmental pollution and wide life toxicity. Selenium is also reported to be present in cigarette paper, tobacco¹³, and various cosmetic samples¹⁴. Because of its significance, several analytical techniques have been reported concerning the determination of selenium¹⁵⁻¹⁸. Many spectrophotometric methods for determination of selenium have been reported and have been reported with some chromogenic reagents, such as 3,3-diaminobenzidine¹⁹, 1,1-dianthrimide^{20,21}, 2,2-dianthrimide²², 4-methyl-o-phenylenediamine²³, diaminochrysazine²⁴, N-methyl-o-phenylenediamine²⁵, 1,10-phenanthroline (vitaeosin)²⁶, dithiozone²⁷, 4,5-diamino-2,6-dimercaptopyrimidine²⁸, 8-hydroquinoline²⁹, 4,5,6-triaminopyrimidine³⁰, chromotropic acid³¹, 1-naphthylamine-7-sulphonic acid³², leuco crystal violet³³, varianin blue³⁴, thioinone³⁵, maxilon blue SG³⁶, rhodamine B-thiocyanate-gelatine-OP

system³⁷, and potassium iodide and starch³⁸. Of these reagents some have been reported to be less selective and sensitive.

In the present investigation a rapid, sensitive and selective method has been reported for the determination of selenium with 2-Acetyl-5-chlorothiophene, phenylenediamine as a reagent employed for the determination of selenium in water and soil samples,

EXPERIMENTAL

Preparation of ACTPDA

The reaction mixture containing 2-acetyl-5-chlorothiophene, (2 g, 0.01229 mol in 20 ml of methanol) phenylenediamine (1.32 g, 0.01229 mol in 20 ml of methanol dissolved in hot condition) was taken in 250-ml round bottom flask and refluxed for 8 h. On cooling the reaction mixture, dark yellow coloured product was formed. It was collected by filtration and washed with hot water and 50 percent cold methanol. This compound was recrystallised from ethanol and dried in vacuo, yield 2.8 g; m.p. 37°C.

Characterisation of ACTPDA

The reagents have been characterized by IR and ¹H NMR spectral data. Infrared spectrum of ACTPDA shows bands at [3432(s); 3386(S), 3286(m), 3176(m), 2979(m); 1630(m); 1591(s), 1435(s); 1362(s); 1248(m) 1174(m), 1297(m); 871(8), 730(8); cm⁻¹ respectively corresponding to vNH-symmetric, vNH-asymmetric, v (C-H) aromatic stretch, v (C=S) stretching, vC=N symmetric, v (C-C) aromatic ring, δ(C-H) of Thiophene ring, (ACTPDA) and δ (C-H)-oop bend (aromatic) and δ (C-C)-oop bend aromatic ring vibrations. ¹H NMR spectra of TDATSC (CDCl₃ + DMSO-d₆) showed signals at 2.54

(3H,S) due to -CH₃, 3.4,(2H,s); 6.6(2H),7.7 (4H,m); due to aromatic ring, 7.4 (2H,s) due to NH₂, C₄H₂S (Thiophene).

pK_a values of reagents

The pK_a values were determined by recording the UV-Visible spectra of 4 X 10⁻⁵ M solutions of the reagent at various pH values and by taking the arithmetic mean of the values obtained from the measurements at different wave lengths determined spectrophotometrically using Phillips and Merrit method. The values of deprotonation of ACTPDA were 6.0 (pK₁)

The reagent (ACTPDA) solution (0.01 M) was prepared by dissolving 50 mg of the compound in dimethylformamide (DMF) in 25-ml standard flask. The reagent solution is stable for at least 24 h. Hydrochloric acid (1 M)-sodium acetate (1 M) (pH 0.5-3.5); 0.2 M NaOAc-0.2 M AcOH (pH 4-6) solutions were used. A stock solution (1 mg L⁻¹) was prepared by dissolving 0.00945(0.001m) mg of Na₂SeO₄. (E.Merck preanalysis) in 50 ml de-ionized water. Dilute standard solutions were prepared from this stock solutions as and when required.

1000 ppm stock solution of Selenium was prepared by:

dissolving 0.189m g of Sodium Selenate in one litre of distilled water. (E.Merck preanalysis) in 1000-ml de-ionized water. Dilute standard solutions were prepared from this stock solutions as and when required.

Recommended procedure:

An aliquot of the solutions containing 0.023-0.070 $\mu\text{g mL}^{-1}$ of Selenium(IV), 10 ml of NaOAc-AcOH buffer solution (pH 6.0) and 1.0 ml of 0.01 M ACTPDA were mixed in a 25-ml volumetric flask and resulting solution was diluted to the mark with distilled water. The absorbance of this solution was measured at 295 nm against respective reagent blank. The measured absorbance is used to compute the amount of selenium present in the samples using predetermined calibration plot. Schimadzu 160A UV-Visible spectrophotometer equipped with 10. cm quartz cell and an ELICO model LI-610pH meter were used in the present study.

Determinatin of selenium in natural and polluted water

Each filterd environmental water samples (100 ml) was analysed for selenium. They all tested negative to these sample a knownen amount of the selenium was added and analysed for selenium by proposed and referenc method³⁴. result are presented in table-2 .

Determinatin of selenium in polluted soil sample

A knownen amount of a soil sludge (2g) sample having known amount of selenium was placed in a 50ml beaker and extracted with concentration HCl (4-5). The extract was boiled for 10 min to convert any Se oxidation ,cooled and diluted to 25 ml with distill water .aliquots of the solution wear analysed by the proposed and reference method³⁴.

RESULTS AND DISCUSSION

The reagents ACTPDA may be easily prepared. The reagent solutions (0.01M) are found to be stable for 24 h. The absorption band from to 295 nm indicates that in solution on increasing the pH, the colour reactions of some important metal ions with ACTPDA are summarized in Table1. In basic medium (above pH 6.0) coordinates the trivalent metal ion as mono anion to give neutral complexes¹³.

Selenium (IV), reacts with ACTPDA in acidic to give water soluble complexes. The colour reactions are instantaneous at room temperature. The change in the order of addition of metal ion, reagent (ACTPDA), and buffer has no effect on the absorbance of complexes. Analytical characteristics of the complexes are summarized in Table 1. The stoichiometry of the complexes (M:L = 1:1) was determined by job's continuous variation and molar ratio

methods. Sodium acetate (0.2M)-acetic acid (0.2M) buffer solution (pH 6.0, T=300 K) and equimolar (1.002 X 10⁻⁴) solutions of Se (IV) AC TPDA were used in the calculation of stability constants of the complexes.

The effect of various cations and anions in 10 $\mu\text{g mL}^{-1}$ of selenium which are generally associated with the metal ion in the determination selenium (IV) was studied by measuring the absorbance of Selenium the a complexes containing 0.070 $\mu\text{g mL}^{-1}$ of selenium (IV) in solution. The colour reaction is developed as described in the standard procedure. An error of $\pm 2\%$ in the absorbance reading was considered tolerable. The tolerance limit ($\mu\text{g mL}^{-1}$) values in $\mu\text{g mL}^{-1}$ for various anions and cations in ACTPDA methods respectively are as follows: Acetate (150), Sulphate(100)⁻¹ phosphate(200); bromide (200); nitrate (100); Borate(100) Chromate(150), Chloride(150), Ba²⁺ (100); Mg²⁺ (100); W⁶⁺ (50); Cd²⁺ (75); Mo⁶⁺ (50); Tl⁴⁺ (50); Fe³⁺ (100); Zn²⁺ (75), Pt⁴⁺ (10); Fe³⁺(100); Al³⁺ (50); V⁴⁺ (100); Ni²⁺ (50); Cu²⁺(25) . Hg²⁺ (75),Co²⁺(50),In³⁺ (25),Ti⁴⁺ (50),W⁶⁺ (50).

Table 1: Physico-chemical and analytical properties of Se^{IV} complexe with ATCPDA

S. No.	Characteristics	Se-ACTPDA
1	λ_{max} (nm)	475
2	pH range (optimum)	6.0
3	Mole of reagent required per mole of metal ion for full colour development	10-fold
4	Time stability of the complex (in hours)	24
5	Beer's law validity range ($\mu\text{g/ml}$)	2.5-10
6	Molar absorptivity ($\text{L mol}^{-1}\text{cm}^{-1}$)	1.002 X 10 ⁴
7	Specific absorptivity ($\text{ml g}^{-1}\text{cm}^{-1}$)	0.075
8	Sandell's sensitivity ($\mu\text{g of Se}^{\text{IV}} \text{ mL}^{-1}$)	0.025
9	Composition of the complex as obtained in Job's and molar ration methods (M:L)	1 : 1
10	Stability constant of the complex	4.40 X 10 ¹⁰
11	Standard deviation	0.65
12	Relative standard deviation (RSD)	0.46%

The present method (ACTPDA) was applied for the determination of selenium when present alone and present in water and soil sample (Table 2).

The present ligands containing heterocyclic ring are found to be potential and cost effective for the determination of selenium(IV) without the need for extraction using the toxic solvents. Further, the reagents are easy to synthesize using commercially available precursors. Moreover, the present method is simple, rapid and very sensitive for non-extractive spectrophotometric determination of selenium(IV) in aqueous medium.

Performance of the proposed method and statistical comparison with reported methods

The proposed method was applied for the determination of selenium(IV) by spiked environmental and biological samples with known quantity of selenium(IV) and carrying out recovery studies. The results obtained by the proposed method were confirmed by measurements of selenium (IV) contents using the reported methods [22]. The results were analyzed statistically by Student's *t*-test and the variance ratio *F*-test at 95% confidence level. The calculated *t* and *F*-values did not exceed those theoretical values. It is evident from Table 2 that there is no significant difference between the spiked

Table 2: Determination of selenium in water sample

Se(IV) Added	Proposed μg/ml ⁻¹ ± S.D ^a	Reference ³⁴ μg/ml ⁻¹ ± S.D ^a	t-test ^b method	F-test ^c method
Polluted water sample (d) ground water				
5.0	5.02 ± 0.03	99.6 ± 0.08	1.78	1.77
10.0	9.98 ± 0.05	99.2 ± 0.30	1.52	2.77
Polluted water sample (e) tap water				
5.0	1.30 ± 0.02	1.34 ± 0.03	1.62	2.25
10.0	1.52 ± 0.05	1.59 ± 0.06	0.57	1.62
Polluted soil sample (f)				
5.0	4.98 ± 0.02	1.34 ± 0.03	98.8	0.75
10.0	9.02 ± 0.05	1.59 ± 0.06	99.5	0.87

^a Mean ± Relative Standard Deviation (n = 5)^b Tabulated t-value for eight degrees of freedom at P (0.95) is 2.308.^c Tabulated F-value for (4,4) degrees of freedom at P (0.95) is 6.39.

d,e,f. Palamanaru ground water-Chittour,A.P.india.

REFERENCES

1. Odom J.D,Dawson.W.H &Ellis.P.D, J.Am Chem Soc,101(1979)5815.
2. Robberecht.H&Van Grieken.R ,Talanta,29(1982)823.
3. Robberecht.H&Deelstra.H,Talanta,31(1984)49.
4. Andrews R W &John son D C,Anal Chem,47(1975)249.
5. Andriano D C,J Water Air Soil Pollut,3(1991) 58.
6. Wang H C,Peng H W &Kuo M S, Anal Chem,17(2001)532.
7. Ahrens L H &Taylor S R, Spectrochem Anal, 2(1961)93.
8. McDowell L R, Minerals in Animals and Human Nutrition(Academic Press ,New York),1992,294.
9. Tan J &Huang Y,J Water Air Soil Pollut,57 (1991)59.
10. Patty F A Industrial Hygiene and Toxicology (Wiely,New York),2(1962)886.
11. Spallholz J E, Martin J L & Ganther H E ,Selenium Biology and Medicin, A VI, West Port,C T,1981.
12. Shamberger R J Biochemistry of Selenium (Plenum Press, New York),1983.
13. West P W & Shendrikar A D, Anal Chim Acta, 82 (1977)403.
14. Shapira J R, Organic Selenium Compound their Chemistry and Biology (Wiely Interscience,New York),1971,703.
15. Jeffrey A H Roger G B & Carolyn A G, J AOAC Ibt, 75 (1992)269.
16. Stewart & Chow A, Talanta,40(1993)1345.
17. Hao D Q ,Hang G Z,Zhang Y M &Tian G J,Talanta,43(1996)595.
18. Macleod B A & Shand C A ,Talanta 43 (1996)1091.
19. Russel B G, Talanta,14(1967)957.
20. Langmyhr F J &Omang S H ,Anal Chim Acta, 23(1960)565.
21. Langmyhr F J &Myh rstad J A ,Anal Chim Acta, 35 (1966)212.
22. Langmyhr F J &Dahl,Anal Chim Acta, 29(1963)377.
23. Kawashima T & Ueno A ,Anal Chim Acta,58(1972)219.
24. Brown R S,Anal Chim Acta, 74(1975)441.
25. Kasterka B,Chem Anal (Warsaw),25(1980)215.
26. Idriss K A, Seleim M M & Abu-Bakr M S, Mikrochim Acta,39 (1980)179.
27. Campbell A D & Yahaya A H, Anal Chim Acta, 119(1980)171.
28. Izquierdo A,Part M D & Aregones L , Talanta, 106 (1981)720.
29. Bhatt A &Gupta V K,J Indian Chem Soc,59 (1982)888.
30. Bodini M E &Alzamora O, Talanta,30(1983)409.
31. Lavale S C &Dave M J, Indian Chem Soc ,66(1989)974.
32. Pyrzynska K,Anal Sci,13 (1997)629.
33. Agarwal O,Sunita G &Gupta V K,J Indian Chem Soc ,75(1998)151.
34. Revanasiddappa H D &Kiran Kumar T N K, Anal SCI,17(2001)1309.
35. Revanasiddappa H D &Kiran Kumar T N,Anal Bioanal Chem,374(2002)1124.
36. Gurkan R &A kçay M ,Microchem J,75 (2003)39.
37. Liang D,Jin -huan S, Xiu-mei W, Zi-hua Y&Yu W,Guangpuxue Yu Guangpu Fenxi,24 (2004)1419.
38. Narayana B, Mathew M, Bhat N G & Sreekumar N V, Microchim Acta, 141 (2003)178.