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ABSTRACT
Objective: The aim of the research is to explore the volumetric and viscometric properties of D(+)-maltose monohydrate and sodium saccharin.

Methods: These properties were assessed at temperatures between 298.15 K and 313.15 K in water and aqueous sodium saccharin (0.05, 0.15, and
0.3) mol-kg!. The thermodynamic parameters of density (p) and viscosity (7), such as partial molar volume (V;’), Masson's coefficients (S,),

expansion coefficient (E*), transfer volume (AmV;), Hepler’s Constant (aZV‘;,/aTZ), apparent specific volume (ASV), Jones-Dole B-coefficient (B),
and temperature-dependence dB/dT were calculated from the experimental data.

Results: The positive values of V;’,SV,E‘”, AtTSV;, B suggests that D(+)-maltose monohydrate can form structures in water and at various
concentrations of aqueous sodium saccharin and increase as the concentration of the cosolute rises. Similarly, negative values of (92V}/9T?), and
dB/dT suggest the solute’s (D(+)-maltose monohydrate) ability to form structures with cosolute at studied concentrations.

Conclusion: Substantial interactions between the hydrophilic groups of the solute (D(+)-maltose monohydrate) and the Na*ion of the cosolute
(sodium saccharin) were found. The studied disaccharide retained its sweetness when combined with sodium saccharin.
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INTRODUCTION

Saccharides, or carbohydrates, are organic compounds composed of carbon, hydrogen, and oxygen, primarily serving as an energy source for
muscles and the central nervous system [1-3]. They are classified based on the number of saccharide units into monosaccharides, disaccharides, and
polysaccharides. Saccharides play a crucial role in biological and physiological processes, contributing to hydration properties and stability in food
and medicine [4-8].

Artificial sweeteners [9-13], such as aspartame, sucralose, and saccharin, provide a low-calorie alternative to natural sugars. Sodium saccharin, which is
300 times sweeter than sucrose, is widely used in food and pharmaceutical industries due to its solubility and stability. An artificial sweetener blend
with saccharides to enhance taste reduces costs and caters to diabetic patients [14-16].

The thermodynamic properties of saccharides and sweeteners, such as density and viscosity, are important for understanding their molecular
interactions in aqueous solutions. These properties influence the solute-solvent interactions, impacting taste perception and structural behavior in
biological and food systems [17-20]. Studies have examined how saccharides interact with water and other solutes, revealing their role in hydration,
taste enhancement, and stability in various applications.

Continuation of earlier research [21, 22], this study extends the investigation to a disaccharide. The densities and viscosities were evaluated at T =
(298.15-313.15) K in water and in aqueous saccharin Na salt with molalities of 0.05, 0.15, and 0.3 m. The interactions between D-(+)-maltose
monohydrate-saccharin sodium salt were discovered through partial molar volumes, transfer characteristics, apparent specific volumes and B-
coefficients.

MATERIALS AND METHODS
Chemicals and reagents

D-(+)-maltose monohydrate and sodium saccharin were purchased from Sigma-Aldrich with a purity of 99.0% and used without further
purification.

Solution preparation

Solutions were prepared with triply distilled water in airtight glass bottles. Measurements were made using an analytical Dhona balance (+0.0001
g). Water was the solvent, and saccharide was the solute in both binary and ternary solutions, with sodium saccharin at concentrations of (0.05,
0.15, and 0.3) mol-kg as the stock solution.

Physical measurement

The measurements were conducted in a glass-walled water bath with a constant temperature (+0.01 K). The densities (p) and viscosities (77) of D-(+)-
maltose monohydrate in water and in aqueous sodium saccharin were measured by using a Bi-capillary Pycnometer [23-26] and Ubbelohde Viscometer
[27-30] at T=(298.15-313.15) K, respectively. The Pycnometer was calibrated with organic solvents, showing good agreement with reported values. The
solvent density at the studied temperature was obtained from published data [31, 32].


mailto:valmikrj@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.22159/ijcr.2025v9i3.259
https://ijcr.info/index.php/journal
https://orcid.org/0009-0009-0910-3560

P.Jondhale & V. Jondhale
Int ] Chem Res, Vol 9, Issue 3, 16-21

RESULTS AND DISCUSSION
Volumetric study

At T= (298.15 K to 313.15) K, the density (p) of D-(+)-maltose monohydrate in aqueous sodium saccharin were studied. The apparent molar
volumes (V,) of the D-(+)-maltose monohydrate were calculated using an equation [33] that relates molar mass, solution density, and molality.

Vy=M/p—(p—po)/(mpp,) ... (1)

The p and Vjof D-(+)-maltose monohydrate in water and in aqueous sodium saccharin with molality values of 0.05, 0.15, and 0.3 were measured
over temperatures from 298.15 K to 313.15 K are shown in table 1. Results showed that the densities and apparent molar volumes depend on
concentration and vary linearly with solute and cosolute concentrations.

Using Masson's equation [34, 35], a relationship between V, for D-(+)-maltose monohydrate in water and in aqueous sodium saccharin is presented.
The partial molar volumes (Vq?) of D-(+)-maltose monohydrate in water matched well with published data [36] as summarized in table 2.

V=V + Syt e (2)

The positive Vd? values, suggesting significant solute-solvent interactions compared to Masson's coefficients (S,) representing solute-solute
interactions in the binary and ternary system [37, 38]. Fig. 1 show the Vd? obtained at experimental temperature for 0.05 m sodium saccharin.

Table 1: Densities (p/kg'm-3), and apparent molar volumes (V;) of (D-(+)-maltose monohydrate) in water and aqueous solutions of (0.05,
0.15, and 0.3) m Na saccharin at T = (298.15-313.15) K

m (T/K)
(mol-kg1) 298.15 303.15 308.15 313.15

p V106 p Vyr106 p V4106 p V4106

(kg-m-3) (m3-mol1) (kg-m-3) (m3-mol1) (kg-m3) (m3-mol1) (kg-m3) (m3-mol1)
D-(+)-maltose monohydrate+water
0.0000 997.05 995.65 994.03 992.22
0.0405 1002.35 228.52 1000.92 229.41 999.28 230.07 997.45 230.88
0.0806 1007.48 228.81 1006.02 229.71 1004.35 230.50 1002.49 231.32
0.1205 1012.48 229.02 1010.97 230.09 1009.27 230.94 1007.40 231.63
0.1606 1017.38 229.36 1015.80 230.52 1014.12 231.20 1012.21 232.03
0.2005 1022.17 229.56 1020.54 230.89 1018.81 231.62 1016.89 232.38
D-(+)-maltose monohydrate+0.05 m Na saccharin
0.0000 1001.20 999.69 998.07 997.50
0.0399 1006.39 229.00 1004.85 229.81 1003.20 230.75 1002.60 231.57
0.0796 1011.44 229.20 1009.88 230.05 1008.19 231.04 1007.56 231.86
0.1199 1016.45 229.53 1014.86 230.36 1013.14 231.37 1012.47 232.28
0.1599 1021.31 229.80 1019.69 230.65 1018.40 231.79 1017.22 232.67
0.1998 1026.06 230.02 1024.90 230.99 1022.58 232.13 1021.86 232.97
D-(+)-maltose monohydrate+0.15 m Na saccharin
0.0000 1008.57 1007.01 1005.27 1003.39
0.0405 1013.79 229.38 1012.21 230.15 1010.44 230.95 1008.76 231.78
0.0800 1018.76 229.65 1017.15 230.43 1015.35 231.36 1013.42 232.18
0.1199 1023.68 229.95 1022.03 230.86 1020.21 231.71 1018.25 232.58
0.1598 1028.45 230.41 1026.79 231.21 1024.93 232.15 1022.96 232.92
0.1998 1033.12 230.81 1031.44 231.58 1029.55 232.53 1027.55 233.34
D-(+)-maltose monohydrate+0.3 m Na saccharin
0.0000 1021.10 1018.32 1016.82 1014.79
0.0401 1026.20 229.74 1023.39 230.71 1021.86 231.69 1019.80 232.59
0.0805 1031.21 230.08 1028.39 230.97 1026.81 232.04 1024.72 232.99
0.1208 1036.10 230.39 1033.23 231.41 1031.62 232.47 1029.51 233.35
0.1602 1040.75 230.78 1037.85 231.82 1036.21 232.84 1034.07 233.78
0.2004 1045.38 231.17 1042.45 232.21 1040.77 233.27 1038.83 234.18

Partial molar volume, qu are related to temperature as
E® = (aV)/0T) = a, + 2a,T .....(3)
In the above equation a1, and az are constants. The expansion coefficient E* can be calculated using the above formula.

As the temperature rises, E® values increase for the given system. The E® outcomes are positive and rise in accordance with increasing cosolute
concentration [39] as shown in table 2, suggesting the stronger solute-solvent interactions.

Partial molar volume of transfer at infinite dilution (AmV;] is plotted against the molality of sodium saccharin for each studied temperature,

suggesting an increase with higher co-solute concentrations [40]. The interactions between D-maltose and aqueous sodium saccharin can be
classified into two types:

I) Hydrophilic-ionic interaction: These take place between cosolute ion and hydrophilic groups of maltose (-C=0,-OH, and -0-).

II) Hydrophobic-ionic interaction: These take place between the cosolute ion and the hydrophobic group of maltose.
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The "co-sphere overlap model"[41-43] states that type (I) interactions positively contribute to the transfer volume (AmV,}?) while type (II)
interactions negatively contribute to it. The positive values obtained for the studied system suggest that the type (I) interactions predominate over
type (11).

Hepler’s constant (02Vg/0T2), data for the studied system are tabulated in table 2 are positive, indicating solute's ability to build structure and it
decrease with the increasing sodium saccharin concentration [44, 45].

Aqueous solutions are categorized into salt, sweet, bitter, and sour based on taste, as classified by Shamil and Birch [46]. The apparent specific
volume (ASV) of solutes in solvent and cosolute is calculated using the equation ASV =V§/M. According to Parke et al. [47], the ASV range for sweet
molecules is in the range (0.51 to 0.71) X 10-6 m3. kg1, with an ideal value of 0.618x107® m3-kg™". The table 2 shows the ASV values for studied
system. For maltose, the ASV values ranged from 0.634 to 0.644x10-¢ m3. kg-l. The maltose retained their sweetness when mixed with sodium
saccharin stock solutions.

w232.00-233.00
" 231.00-232.00
u230.00-231.00
u229.00-230.00
w 228.00-229.00
u 227.00-228.00

m3-mol-1

m (mol-kg1)

Fig. 1: Variation of V, (m3:mol) of D-(+)-maltose monohydrate in sodium saccharin with molality 0.05 m (mol-kg1)

Table 2: (Vg), (S,). E%, ASV, (azvg/arz)p, and (Amvg) of disaccharide, D-(+)-maltose monohydrate in water and aqueous Na saccharin
(0.05, 0.15, and 0.3) m (mol-kg1) at T = (298.15, 303.15, 308.15, and 313.15) K

System Parameters (T/K)
298.15 303.15 308.15 313.15
D-(+)-maltose monohydrate+water 106- (Vdf’) 228.262 228.985 229.717 230.526
106 - (S,) 6.58 9.44 9.52 9.30
107-E® 0.1376 0.1462 0.1547 0.1633
106.ASV 0.634 0.636 0.638 0.640
108 -(92Vy/aT)p 0.001715
D-(+)-maltose monohydrate 106- (V¢°) 228.723 229.482 230.363 231.188
+ 106 - (S,) 6.560 7.410 8.793 9.010
0.05 m Na saccharin 107-E* 0.1555 0.1622 0.1688 0.1755
106.ASV 0.635 0.637 0.639 0.642
108 -(AgrsV,2) 0.460 0.497 0.645 0.662
108-(92V§/0T?)p 0.001329
D-(+)-maltose monohydrate+ 106 (V¢0) 228.949 229.749 230.544 231.397
0.15 m Na saccharin 106 - (S,) 9.10 9.13 9.94 9.68
107-E® 0.1550 0.1602 0.1654 0.1707
106.ASV 0.635 0.638 0.640 0.642
108 (AyrsV0) 0.686 0.764 0.827 0.872
10%-(2Vy/9T)p 0.001047
D-(+)-maltose monohydrate+ 106 (V¢0) 229.362 230.264 231.272 232.184
0.3 m Na saccharin 106 - (S,) 8.88 9.63 9.89 9.92
107-E® 0.1880 0.1889 0.1899 0.1909
106.ASV 0.637 0.639 0.642 0.644
108 (AersV) 1.100 1.279 1.554 1.658
108 (8%Vy/aTH)p 0.000197

Volumetric study

The viscosities (1) of D-(+)-maltose monohydrate in water and aqueous sodium saccharin were measured at temperatures (298.15, 303.15, 308.15,
and 313.15) K and concentrations (m = 0.05, 0.15, and 0.30). The result indicates that viscosity decreases with increasing temperature but increases
as the co-solute concentration (sodium saccharin) rises. The relative viscosities (n,) were calculated by comparing the viscosity in the ternary
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solution, n (maltose+sodium saccharin+water), to that in the solvent mixture (sodium saccharin+water) 7,, as shown in table 3. These values were
then used to calculate B-coefficients using the Jones-Dole equation [48-50] as:

n. =n/n,=1+BC .. 5)

The B-coefficients, which characterize solute-solvent interactions, were determined from the slope of relative viscosity versus molality plots. The B-
coefficients for the studied system at the different temperatures showed a decrease as temperature increased (table 4), suggesting the solute (maltose)
contributes to structure formation due to the ordered hydrogen-bonded structure around it [51]. Fig. 2 shows the variation of relative viscosity, nof
maltose monohydrate in Na saccharin with molality 0.05 m (mol-kg). Similar results were obtained for (0.15 and 0.30) m sodium saccharin. Positive B-
coefficient values indicate stronger solute-solvent interactions compared to solute-solute interactions. The results also provide insight into the ion
solvation behaviour and the ability of solutes to form structures.

The dB/dT ratio is an important factor in determining a solute's capacity to form or break structures derived from temperature-dependent B-
coefficients [52]. Table 4 shows the dB/dT values for the studied saccharide in both water and aqueous sodium saccharin at studied concentrations
and temperatures. The negative dB/dT values observed for studied systems suggest that the solute is more likely to form structures [53].

1.3000 -
1.2000
21,1000 1
+298.15 K
315K
1.0000 "
30815K
«313.15 K
0.9000 . . : : ,
0.0000 0.0500 0.1000 0.1500 0.2000 0.2500
m [mol-kgt)

Fig. 2: Variation of relative viscosity, n of maltose monohydrate in Na saccharin with molality 0.05 m (mol-kg)

Table 3: Viscosities (7/mPa-s), and relative viscosities (n,) of disaccharide, D-(+)-maltose monohydrate in H20 and aqueous solutions of
(0.05, 0.15, and 0.3) m Na saccharin at T = (298.15, 303.15, 308.15,and 313.15) K

m n L/
(mol-kg) (T/K)

298.15 303.15 308.15 313.15 298.15 303.15 308.15 313.15
D-(+)-maltose monohydrate+H20
0.0000 0.8900 0.7972 0.7191 0.6527 0.9898 0.9916 0.9906 0.9903
0.0405 0.9243 0.8279 0.7449 0.6757 1.0385 1.0386 1.0358 1.0352
0.0806 0.9594 0.8583 0.7736 0.7019 1.0780 1.0767 1.0758 1.0754
0.1205 0.9995 0.8928 0.8020 0.7273 1.1230 1.1200 1.1153 1.1142
0.1606 1.0377 0.9260 0.8331 0.7543 1.1660 1.1615 1.1585 1.1556
0.2005 1.0845 0.9664 0.8675 0.7870 1.2186 1.2122 1.2063 1.2057
D-(+)-maltose monohydrate+0.05 m Na saccharin
0.0000 0.9071 0.8040 0.7187 0.6582 0.9907 0.9900 0.9906 0.9923
0.0399 0.9421 0.8328 0.7446 0.6814 1.0386 1.0358 1.0360 1.0353
0.0796 0.9795 0.8660 0.7735 0.7093 1.0798 1.0771 1.0762 1.0776
0.1199 1.0213 0.9026 0.8053 0.7380 1.1259 1.1226 1.1205 1.1212
0.1599 1.0644 0.9383 0.8393 0.7653 1.1734 1.1670 1.1677 1.1627
0.1998 1.1071 0.9754 0.8693 0.7945 1.2204 1.2132 1.2095 1.2071
D-(+)-maltose monohydrate+0.15 m Na saccharin
0.0000 0.9309 0.8372 0.7455 0.6772 0.9952 0.9938 0.9908 0.9924
0.0405 0.9734 0.8734 0.7747 0.7030 1.0456 1.0433 1.0391 1.0381
0.0800 1.0135 0.9069 0.8042 0.7303 1.0887 1.0832 1.0787 1.0783
0.1199 1.0572 0.9457 0.8402 0.7589 1.1357 1.1296 1.1270 1.1207
0.1598 1.0995 0.9820 0.8698 0.7854 1.1811 1.1730 1.1667 1.1598
0.1998 1.1500 1.0266 0.9095 0.8209 1.2354 1.2263 1.2200 1.2121
D-(+)-maltose monohydrate+0.3 m Na saccharin
0.0000 0.9738 0.8722 0.7817 0.7099 0.9969 0.9953 0.9944 0.9938
0.0401 1.0195 09112 0.8157 0.7383 1.0469 1.0447 1.0435 1.0399
0.0805 1.0645 0.9488 0.8477 0.7674 1.0932 1.0878 1.0843 1.0810
0.1208 1.1108 0.9892 0.8824 0.7991 1.1406 1.1341 1.1288 1.1256
0.1602 1.1600 1.0311 0.9203 0.8311 1.1912 1.1822 1.1773 1.1706
0.2004 1.2071 1.0743 0.9580 0.8632 1.2396 1.2317 1.2255 1.2158
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Table 4: Viscosity B-coefficients, and dB/dT, of disaccharide, D-(+)-maltose monohydrate in water and aqueous solutions of (0.05, 0.15,
and 0.3) m Na saccharin at T = (298.15, 303.15, 308.15, and 313.15) K

System Parameters (T/K)

298.15 303.15 308.15 313.15
D-(+)-maltose monohydrate+ B 1.120 1.080 1.059 1.053
water dB/dT -0.0044
D-(+)-maltose monohydrate+ B 1.143 1.111 1.096 1.072
0.05 m Na saccharin dB/dT -0.0046
D-(+)-maltose monohydrate+ B 1.185 1.144 1.129 1.078
0.15 m Na saccharin dB/dT -0.0067
D-(+)-maltose monohydrate+ B 1.208 1.170 1.142 1.103
0.3 m Na saccharin dB/dT -0.0068
CONCLUSION

The study explores the use of a blend of D(+)-maltose monohydrate and sodium saccharin as an alternative to sweeteners to improve taste and
stability in sweetened compositions. The volumetric and viscometric properties of D(+)-maltose monohydrate in water and aqueous sodium
saccharin were measured at temperatures ranging from 298.15 K to 313.15 K. The thermodynamic parameters, such as V,, V¢?, Sw E®, Atrqu?v
ASV, B, and dB/dT were calculated from the experimental data. The findings suggest that transfer occurs from water to aqueous sodium
saccharin, with the transfer volume increasing as the concentration of the cosolute rises. Additionally, the sweetness of the studied disaccharide
was preserved (0.634-0.644)10-6. m3. kg'! when blended with sodium saccharin. The solute (D(+)-maltose monohydrate) can form structures in
water and at various concentrations of aqueous sodium saccharin system, as shown by positive B-coefficient and negative dB/dT values.
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