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ABSTRACT 

Objective: In the present work, protease was produced from Bacillus subtilis under solid-state fermentation (SSF). The effect of lyophilization with 

different additives on the activity of protease in an organic solvent and kineteci properties was investigated.  

Methods: Production conditions of protease (fermentation time, moisture level, initial pH, temperature) were optimized. After production, it was 

partially purified and then, lyophilized with different additives from an aqueous buffer solution containing 98% (w/w) of different additives 

(pumice, KCl, without additive) for 72 h after freezing in liquid nitrogen. After that, the effect of organic solvents (2.5% and 5% of DCM, ethanol, 

hexane, toluene) on these lyophilized protease preparations was determined and their kinetic properties were determined. 

Results: Optimum protease production was obtained with 40% of moisture level, at pH 7.5, 37 °C after 24 h fermentation. It was partially purified 

by using ammonium sulphate precipitation (20-80%) with 5.8-fold and specific activity of 38 U/mg and then dialysed with 6.4-fold and a specific 

activity of 35 U/mg. Co-lyophilization of protease with pumice and KCl was increased activity of an enzyme in aqueous organic solvents when 

compared lyophilized protease without additive. Used solvents, except DCM, were increased activity of lyophilized protease with pumice/KCl. It was 

found that the lyophilization with pumice and KCl resulted in an increasing in the catalytic efficiency, while it was decreased in Km and Vmax values.  

Conclusion: The obtained findings demonstrated that protease from B. subtilis can effectively be produced under SSF by using wheat bran and used 

in industrial applications because of showing improved activity in an organic solvent by co-lyophilization with pumice/KCl. 
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INTRODUCTION 

Proteases are one of the most prestigious groups of industrial enzymes. They constitute 60% of the global industrial enzyme market. Although 

proteases can be produced in all organisms [1], microorganisms produce enzymes easily and faster among them, and enzyme production can be 

performed at any time and do not affected by seasonal fluctuations. Furthermore, extracellular production of enzymes by microorganisms provides 

advantages like simple downstream processing and decreasing the costs [2]. The genus Bacillus is the most prominent source of protease with high 

yield [2-4]. Protease production from bacteria is generally performed with submerged fermentation (SmF) in shake flasks or fermenters [5]. But, 

there are also studies on the production of protease by solid-state fermentation (SSF) [1, 5-8]. SSF has several advantages such as low production 

cost, low water and energy requirements, decrease extensive downstream processing and waste generation, improve product stability. Based on 

these, SSF has gained more interest for several industrial applications [1, 9]. 

Enzyme catalysis in low water containing organic solvents has gained considerable attention due to its advantages such as high selectivity, thermo-

stability and reduced side reactions in numerous synthetic and biologic catalysis [10, 11]. However, the industrial application of enzymes is limited 

in such media because many enzymes have relatively low catalytic activity [12]. Therefore, many strategies can be performed to enhance enzyme 

activity, stability, and enantioselectivity. Some of these strategies were supposed to activate enzymes in organic media, like salt activation, chemical 

modification and immobilization of enzymes [11, 13]. Especially, the co-lyophilization of enzymes with inorganic salts from aqueous solution is 

found remarkably effective in terms of activation. Previously, it was reported that catalytic activity of subtilisin Carlsberg (SC) in different organic 

solvents was increased almost 4000-fold by addition of 98 wt.% of KCl [14] and 27000-fold in hexane with the optimized condition [15]. Lindsay et 

al. [16] have revealed that a formulation consisting of 98% (w/w) of a 1:1 KAc: CsCl salt-containing penicillin amidase preparation was 35,000-fold 

more active than the salt-free formulation in hexane. In addition that, thermolysin [17], a-chymotrypsin [14], Mucor javanicus lipase [18], and 

penicillin amidase [19] activity have been studied in organic solvents. Furthermore, fumed silica has been used to activation of Candida antarctica 

Lipase B (CALB) [13] and subtilisin Carlsberg [12, 20]. Based on these studies, natural porous silica based material, pumice, was used to activation 

of protease from B. subtilis in this study. 

The first aim of this study was to optimize protease production from B. subtilis under SSF by using wheat bran as a carbon source. The other aim 

was to determine the effect of co-lyophilization with pumice on protease activity in an organic solvent and compare it with co-lyophilized enzyme 

preparations with KCl and without additive. 

MATERIALS AND METHODS 

KH2PO4, KCl, ethanol, hexane, toluene and DCM were obtained from Merck. All other chemicals used were of analytical grade. B. subtilis M-11 was 

used as enzyme producer microorganism [21]. Pumice (NMP-6; 0-180 µm) obtained from the region of Nevşehir from Turkey. 

Enzyme production 

The protease was obtained by SSF using wheat bran. The culture medium was composed of 5 g of the substrate (dry weight) and the moisture 

content was adjusted by using 50 mmol of KH2PO4 buffer (pH 7.5). Erlenmeyer flask containing the culture medium was autoclaved, then 
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subsequently inoculated with cell suspension of B. subtilis, followed by incubation at 37 °C for 24 h. At the end of the fermentation, culture was 

extracted with 50 ml of KH2PO4 buffer (pH 7.5) by shaking for 1 h. The culture mixture was centrifuged at 8000 rpm for 20 min at room 

temperature. The supernatant used as crude enzyme extract. All data represent the mean (±standard deviation, SD) of three independent 

experiments. 

Partial purification of protease 

Proteins were precipitated from the crude enzyme extract at 60–80% saturation and were collected by centrifugation (8000 rpm, 20 min). After 

that, precipitated proteins were redissolved in a small amount of 50 mmol KH2PO4 buffer (pH 7.5) and then dialyzed against the same buffer. 

Protease activity 

Protease activity was measured as previously reported by the methods of Cupp-Enyard [22] with small modifications [21]. 

Enzyme preparation 

The partial purified protease solution was lyophilized with 98% of KCl/pumice or without any additive. Enzyme solutions were shaken at 25 °C, 

frozen with liquid nitrogen for 20 min, and then lyophilized in a freeze-drier for 72 h [12]. Lyophilized protease preparations were used for the 

proteolytic activity reaction after pre-equilibration at the desired water activity. 

The effect of organic solvents (ethanol, hexane, toluene and DCM) on lyophilized protease preparations were evaluated by adding 2.5 and 5% (v/v) 

of the solvent in the activity assay. The activity of the lyophilized protease preparations without solvent was taken as 100%. 

Kinetic studies 

The kinetic constants were determined for three lyophilized protease preparations using casein as a substrate at different concentrations ranging 

from 0.13%-6.5% at 37 °C and pH 7.5 for 10 min. Maximal reaction (Vmax) and Michaelis-Menten constant (Km) values were calculated by 

Michaelis-Menten plots. The value of the catalytic efficiency (Vmax/Km) was calculated. 

RESULTS AND DISCUSSION 

SSF processes can be affected by several important factors such as strain, the substrate for enzyme production and physical, chemical and 

biochemical process parameters. To optimize the SSF conditions for the production of the protease from B. subtilis, fermentation time, moisture 

level (%), initial pH of the substrate, and temperature of incubation were studied. These are described as below. 

Effect of fermentation time on protease production 

The SSF medium was inoculated with the bacterial strain and incubated for various time intervals (12 h-36 h). The enzyme production was 

gradually increased with time and the highest enzyme activity (428±36 U ml-1) was obtained for 24 h of incubation (fig. 1). A decreasing in the 

enzyme activity was also observed with prolonged incubation. There is a need a certain extent for the production of enzyme and the other 

metabolites. When the nutrients for the microorganism start to decrease, the enzyme production starts to decrease [5]. 

 

 

Fig. 1: Effect on time on protease production from B. subtilis. All values are expressed as mean±SEM (n = 3) 

 

Effect of moisture level on protease production 

Among the several factors, the initial moisture content is one of the most critical factor for the microbial growth and enzyme production under SSF 

[6, 23]. Water content in the medium provide the nutrients more easily accessible for microorganisms. However, high level of water can adversely 

affect oxygen diffusion in the substrate [23]. In this study, the maximum production of protease from B. subtilis was observed in the 40% moisture 

level under SSF (fig. 2). The activity of protease was decreased attributed to oxygen transfer limitation because of the high level of water with an 

increased level of moisture. Moreover, it could be said that 30% of the moisture level is too low for the B. subtilis growth. Previously, Saminathan 

and Sriman [24] were reported that the protease production was highest in the 20-40% moisture level from B. subtilis IAS01 using agro-industrial 

by-product under SSF. 
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Fig. 2: Effect of moisture level on protease production from B. subtilis. All values are expressed as mean±SEM (n = 3) 

 

Effect of initial pH on protease production 

The effect of initial pH values on protease production is shown in fig. 3. While the protease production was optimum at pH 7.5, it decreased at pH 6.5 

and 8.5. This could be attributed to the slow growth of bacterium at lower and higher pHs [24]. Therefore, the initial pH of the fermentation medium 

was kept at pH 7.5 in further experiments. 

 

 

Fig. 3: Effect of initial pH on protease production from B. subtilis. All values are expressed as mean±SEM (n = 3) 

 

Effect of temperature on protease production 

The temperature of the fermentation affected the protease activity, as shown in fig. 4. The enzyme production by B. subtilis reached the highest 

value at the 37 °C. The enzyme production was slightly decreased at 27 °C and 47 °C. Saba et al.[5] reported optimum alkaline protease production 

by B. subtilis under SSF at 37 °C. However, above 37 °C and up to 50 °C, there was a marked decrease in the biosynthesis of alkaline protease by B. 

subtilis due to higher temperatures may cause an adverse effect on microorganism, respectively. 
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Fig. 4: Effect of temperature on protease production from B. subtilis. All values are expressed as mean±SEM (n = 3) 

 

Partial purification of protease 

B. subtilis was grown under SSF in an erlenmeyer flasks (250 ml) containing wheat bran and 50 mmol of KH2PO4 (pH 7.5) with 40% moisture level at 

37 °C and pH 7.5 for 24 h. The culture was extracted with 50 mmol of KH2PO4 (pH 7.5) and centrifuged at 8000 rpm for 30 min. The supernatant was 

subjected to 20-80% ammonium sulfate precipitation and then centrifuged at 8000 rpm for 30 min. The obtained precipitates were dissolved in 50 

mmol of KH2PO4 (pH 7.5) and dialyzed against the same buffer for 24 h at 4 °C. After dialysis, protease was purified 6.4-fold with 35% yield from the 

supernatant. The summary of the partial purification of protease from B. subtilis is given in table 1. 

 

Table 1: The summary of the partial purification of protease from B. subtilis 

Steps Total protein (mg) Total activity (U) Specific activity (U/mg) Yield (%) Purification fold 
Supernatant 910 148.850 16 100 1 

Ammonium sulfate precipitation 600 56.460 94 38 5.8 

Dialysis 498 51.450 103 35 6.4 

 

Organic solvents effect on lyophilized protease preparations 

The solvents (Ethanol, hexane, toluene and DCM) were used to study their effects on the differently lyophilized protease preparations. The activity 

of the enzymes was assayed in the presence of varying concentrations (2.5 and 5% v/v) of these solvents added in the standard assay mixture. Table 

2 shows the effect of different concentrations of organic solvents on the proteolytic activity of lyophilized enzyme preparations. 

 

Table 2: Relative activity of lyophilized protease preparations in presence of different organic solvents at concentrations of 2.5 and 5% 
(v/v) 

 Enzyme (%) Pumice (%) KCl (%) 
None 100±3.7 100±3.5 100±12 

2.5% 

DCM 29±13 45±12 63±21 

Ethanol 65±4.5 130±14 112±15 

Hexane 75±4.4 157±11 129±6.3 

Toluen 51±6.6 120±14 116±9.3 

5% 

DCM 24±8.6 36±13 45±4.4 

Ethanol 59±10 133±11 128±7.4 

Hexane 92±3.7 176±6.7 153±7.6 

Toluen 78±6.3 140±1.6 124±17 

*All values are expressed as mean±SEM (n = 3).  

 

All used solvents have decreased proteolytic activity of lyophilized enzyme preparation without additives (table 2, None). DCM as a polar aprotic 

solvent decreased proteolytic activity of all lyophilized enzyme preparations at 2.5% and 5% (v/v) of concentration. Badgujar et al. [25] reported 

that the proteolytic activity of cysteine protease was decreased with DCM. Ethanol as hydrophilic organic solvent and hexane and toluene as aprotic 

nonpolar organic solvents have increased proteolytic activity of lyophilized enzyme preparations with pumice and KCl. Previously, Hermanova et 

al.[26] showed that lipase immobilized on graphene oxide showed increased hydrolytic activity in a non-polar solvent (toluen, n-hexane). 
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Furthermore, the proteolytic activity of lyophilized enzyme preparations with pumice and KCl increased with increasing concentration of solutions. 

Also, a co-lyophilized protease with pumice gave more increased catalytic activity in aqueous organic solvents than co-lyophilized protease with 

KCl. It was reported that the addition of kosmotropic salts stabilizes the native form of the enzyme against denaturation because they have strong 

interactions with water and increase its surface tension [15, 16]. Based on this, it can be said that pumice also provided a similar effect on 

proteolytic activity. Catalysis in organic media with enzymes can provide important advantages in industrial applications. But, there are some 

difficulties due to enzymes that have low activity and instability in organic media [3]. The results showed that co-lyophilization of protease with 

pumice and KCl improved the catalytic activity in the presence of 2.5% and 5% of organic solvents when compared with lyophilized protease 

without additive (table 2, Enzyme). 

Kinetic studies 

The kinetic parameters (Km and Vmax) of the lyophilized protease preparations (consisting of 98% KCl, 98% pumice, no addition) were also studied 

by using casein as a substrate. The kinetic parameters were calculated using Michaelis-Menten plots (fig. 5). Km, Vmax and catalytic efficiency values 

were given in table 3. It was found that the lyophilization with KCl and pumice resulted in an increasing in catalytic efficiency, while there is a 

decreasing in Km and Vmax values. Previously, Cruz et al. [13] obtained similar results with fumed silica. It can be said that lyophilization of enzyme 

with KCl and pumice enhanced the catalytic activity of the enzyme. Protease lyophilized with KCl showed higher catalytic efficiency compared with 

lyophilized with pumice and without additive enzyme preparations. Ru et al. [27] indicated that KCl produced the greatest activation for subtilisin 

Carslberg. 

 

Table 3: Km, Vmax and catalytic efficiency values of lyophilized protease preparations 

Sample Vmax (U/ml) Km (% casein) Catalytic efficiency (Vmax/Km) 
None 1260±202 2.40±0.70 525 

Pumice 1245±146 2.30±0.53 541 

KCl 926±100 1.10±0.24 841 

*All values are expressed as mean±SEM (n = 3).  

 

 

Fig. 5: Michaelis-menten plots of lyophilized protease preparations 
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CONCLUSION 

In the present study, optimum conditions of protease production from B. subtilis under SSF were determined as pH 7.5, 37 °C 40% moisture level 

and 24 h. Effect of organic solvents (Ethanol, hexane, toluene, DCM) was studied on lyophilized protease with pumice, KCl and without additive. The 

obtained protease showed improved activity in organic solvents (2.5 and 5%) by co-lyophilization in the presence of pumice/KCl. Especially, co-

lyophilized protease with pumice displayed higher catalytic activity. In addition that, a co-lyophilized protease with pumice/KCl displayed higher 

catalytic efficiency (Vmax/Km). Using enzyme in organic media has several advantageous such as increased solubility of substrate, suppression of 

water-dependent side reactions might occur, alteration of substrate specify, potential for enzymes to be used directly in a chemical process. 

Improving the activity and stability of the enzyme in organic media is important for different applications of biocatalytic reactions in 

pharmaceutical, food, and fine chemical industries. As conclusion, it can be said that co-lyophilized protease preparations in the presence of 

pumice/KCl can play an important role in several industrial processes with their improved activity in organic media. 
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